分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),計算f(1),f′(1),求出切線方程即可;
(Ⅱ)求出函數(shù)的導(dǎo)數(shù),得到${x^2}=\frac{1}{x_1},a=-({{x_1}+\frac{1}{x_1}})$,求出g(x1)-g(x2)的解析式,根據(jù)函數(shù)的單調(diào)性求出其最小值即可.
解答 解:(I)當(dāng)a=2時,$f'(x)=2lnx+x-\frac{1}{x}+2,f'(1)=2,f(1)=\frac{1}{2}$,
得切線l的方程為$y-\frac{1}{2}=2({x-1})$即4x-2y-3=0.
(II)$g(x)=alnx+x-\frac{1}{x}+a$,定義域為(0,+∞),
$g'(x)=1+\frac{a}{x}+\frac{1}{x^2}=\frac{{{x^2}+ax+1}}{x^2}$,令g'(x)=0得x2+ax+1=0,
其兩根為x1,x2,且x1+x2=-a,x1x2=1,
故${x^2}=\frac{1}{x_1},a=-({{x_1}+\frac{1}{x_1}})$.
$g({x_1})-g({x_2})=g({x_1})-g({\frac{1}{x_1}})={x_1}-\frac{1}{x_1}+aln{x_1}-({\frac{1}{x_1}-{x_1}+aln\frac{1}{x_1}})$
=$2({{x_1}-\frac{1}{x_1}})+2aln{x_1}=2({{x_1}-\frac{1}{x_1}})+2({{x_1}+\frac{1}{x_1}})ln{x_1}$,
$h(x)=2({x-\frac{1}{x}})+2({x+\frac{1}{x}})lnx,x∈({0,e}]$.
則(g(x1)-g(x2))min=h(x)min,$h'(x)=\frac{{2({1+x})({1-x})lnx}}{x^2}$,
當(dāng)x∈(0,1]時,恒有h'(x)≤0,x∈(1,e]時,恒有h'(x)<0,
總之當(dāng)x∈(1,e]時,h(x)在x∈(0,e]上單調(diào)遞減,
所以$h{(x)_{min}}=h(e)=-\frac{4}{e}$,
∴${({g({x_1})-g({x_2})})_{min}}=-\frac{4}{e}$.
點評 本題考查了切線方程問題,考查函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道綜合題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{3}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 26.25 | B. | 26.5 | C. | 26.75 | D. | 27 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,1) | B. | (-2,0) | C. | (0,+∞) | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 22018-1 | B. | 22018+1 | C. | 22017-1 | D. | 22017+1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com