【答案】
分析:令t=x
-2,則y=1og
at,逐一分析滿足題目中四個條件時,內(nèi)外函數(shù)的單調(diào)性,并根據(jù)“同增異減”的原則,我們可以判斷出復(fù)合函數(shù)y=1og
ax
-2的單調(diào)性,進而得到答案.
解答:解:令t=x
-2,則y=1og
at,
則當
時,t=x
-2為增函數(shù),y=1og
at為減函數(shù),則y=1og
ax
-2為單調(diào)減函數(shù),故①滿足條件;
當
時,t=x
-2為減函數(shù),y=1og
at為減函數(shù),則y=1og
ax
-2為單調(diào)增函數(shù),故②不滿足條件;
當
時,t=x
-2為增函數(shù),y=1og
at為增函數(shù),則y=1og
ax
-2為單調(diào)增函數(shù),故③不滿足條件;
當
時,t=x
-2為減函數(shù),y=1og
at為增函數(shù),則y=1og
ax
-2為單調(diào)減函數(shù),故④滿足條件;
故答案為:①④
點評:本題考查的知識點是對數(shù)函數(shù)的單調(diào)性與特殊點,其中熟練掌握對數(shù)函數(shù),冪函數(shù)的單調(diào)性及復(fù)合函數(shù)單調(diào)性“同增異減”的原則,是解答本題的關(guān)鍵.