【題目】采用系統(tǒng)抽樣方法從960人中抽取32人做問卷調(diào)查,為此將他們隨機(jī)編號為1,2,…,960,分組后在第一組采用簡單隨機(jī)抽樣的方法抽到的號碼為9.抽到的32人中,編號落入?yún)^(qū)間[1,450]的人做問卷A,編號落入?yún)^(qū)間[451,750]的人做問卷B,其余的人做問卷C.則抽到的人中,做問卷B的人數(shù)為( )
A.7
B.9
C.10
D.15
【答案】C
【解析】解:960÷32=30,故由題意可得抽到的號碼構(gòu)成以9為首項、以30為公差的等差數(shù)列,且此等差數(shù)列的通項公式為an=9+(n﹣1)30=30n﹣21.
由 451≤30n﹣21≤750 解得 15.7≤n≤25.7.
再由n為正整數(shù)可得 16≤n≤25,且 n∈z,故做問卷B的人數(shù)為10,
故選:C.
【考點精析】解答此題的關(guān)鍵在于理解系統(tǒng)抽樣方法的相關(guān)知識,掌握把總體的單位進(jìn)行排序,再計算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本;第一個樣本采用簡單隨機(jī)抽樣的辦法抽取.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由a1=1,d=3確定的等差數(shù)列{an}中,當(dāng)an=298時,序號n等于( )
A.99
B.100
C.96
D.101
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中錯誤的是( )
A.若α⊥β,aα,則a⊥β
B.若m∥n,n⊥β,mα,則α⊥β
C.若α⊥γ,β⊥γ,α∩β=l,則l⊥γ
D.若α⊥β,α∩β=AB,a∥α,a⊥AB,則a⊥β
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】利用回歸分析的方法研究兩個具有線性相關(guān)關(guān)系的變量時,下列說法正確的是:
①相關(guān)系數(shù)r滿足|r|≤1,而且|r|越接近1,變量間的相關(guān)程度越大,|r|越接近0,變量間的相關(guān)程度越。
②可以用R2來刻畫回歸效果,對于已獲取的樣本數(shù)據(jù),R2越小,模型的擬合效果越好;
③如果殘差點比較均勻地落在含有x軸的水平的帶狀區(qū)域內(nèi),那么選用的模型比較合適;這樣的帶狀區(qū)域越窄,回歸方程的預(yù)報精度越高;
④不能期望回歸方程得到的預(yù)報值就是預(yù)報變量的精確值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={0,1,2},集合B={0,2,4},則A∩B=( )
A.{0,1,2}
B.{0,2}
C.{0,4}
D.{0,2,4}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},則(UA)∩(UB)=( )
A.{5,8}
B.{7,9}
C.{0,1,3}
D.{2,4,6}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一排9個座位坐了3個三口之家.若每家人坐在一起,則不同的坐法種數(shù)為( )
A.3×3!
B.3×(3!)3
C.(3!)4
D.9!
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】式子σ(a,b,c)滿足σ(a,b,c)=σ(b,c,a)=σ(c,a,b),則稱σ(a,b,c)為輪換對稱式.給出如下三個式子:①σ(a,b,c)=abc; ②σ(a,b,c)=a2﹣b2+c2; ③σ(A,B,C)=cosCcos(A﹣B)﹣cos2C(A,B,C是△ABC的內(nèi)角).其中,為輪換對稱式的個數(shù)是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax3+bsinx+4(a,b∈R),f(lg(log210))=5,則f(lg(lg2))=( )
A.﹣5
B.﹣1
C.3
D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com