當(dāng)x≥0時,f(x)=2,當(dāng)x<0時,f(x)=1.又g(x)=3f(x-1)-
f(x-2)
2
(x>0),求y=g(x)的表達式.
考點:函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)f(x)的取值情況,對x的取值情況進行討論,然后,確定函數(shù)y=g(x)的表達式.
解答: 解:∵f(x)=
2    ,   x≥0
1    , x<0
,
當(dāng)x-2≥0,即x≥2時,
g(x)=3×2-
2
2
=5;
當(dāng)
x-2<0
x-1>0
時,1<x<2,
g(x)=3×2-
1
2
=
11
2
;
當(dāng)
x>0
x-1<0
x-2<0
時,0<x<1,
g(x)=3×1-
1
2
=
5
2
,
當(dāng)x-1=0時,x=1,
g(1)=3×1-
1
2
=
5
2
,
g(x)=
5     ,x≥2
11
2
  ,1<x<2
5
2
    ,0<x≤1
點評:本題重點考查函數(shù)的解析式求解方法,理解分段函數(shù)是解題的關(guān)鍵,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)
2+mi
1+i
(m∈R)的實部與虛部的和為零,則m的值等于( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為積極配合2014年春季校田徑運動會志愿者招募工作,江都中學(xué)擬成立由4名同學(xué)組成的志愿者招募宣傳隊,經(jīng)過初步選定,4名男同學(xué),5名女同學(xué)共9名同學(xué)成為候選人,每位候選人當(dāng)選宣傳隊隊員的機會是相同的.
(1)記X為男同學(xué)當(dāng)選的人數(shù),寫出X的分布列,并求出X的數(shù)學(xué)期望;
(2)設(shè)至少有n名女同學(xué)當(dāng)選的概率為Pn,求滿足Pn
1
2
時n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,若a+c=
2
b,A>C且A、B、C 的大小成等差數(shù)列,求角C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足ax•f(x)=b+f(x)(ab≠0),f(1)=2且f(x+2)=-f(2-x)對定義域中任意x都成立,
(1)求函數(shù)f(x)的解析式; 
(2)若正項數(shù)列{an}的前n項和為Sn,滿足Sn=
1
4
[3-
2
f(an)
]2
,求證{an}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖在四棱錐P-ABCD中,PA丄平面ABCD,AC丄AD,AB丄BC,∠BAC=45°,PA=AD=2,AC=1.建立適當(dāng)?shù)目臻g直角坐標系,利用空間向量方法解答以下問題:
(Ⅰ)證明:PC⊥AD;
(Ⅱ)求二面角A-PC-D的余弦值;
(Ⅲ)設(shè)E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
3
sin(ωx+
π
3
)(ω>0,x∈R)圖象的相鄰兩條對稱軸之間的距離為π.
(Ⅰ)求ω的值及f(x)圖象的對稱中心;
(Ⅱ)在△ABC中,若f(A)=3,且BC=
3
,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2x,g(x)為定義在[-1,1]上的奇函數(shù),且當(dāng)x>0時,g(x)=f(x),求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2-2x+a在區(qū)間(2,3)內(nèi)有一個零點,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案