已知集合A={x|x2-x-2≤0},集合T={x|x≤5}為整數(shù)集,則S∩T=
 
考點:交集及其運算
專題:集合
分析:求解一元二次不等式化簡集合A,然后直接利用交集運算得答案.
解答: 解:∵A={x|x2-x-2≤0}={x|-1≤x≤2},
T={x|x≤5}為整數(shù)集,
S∩T={-1,0,1,2}.
故答案為:{-1,0,1,2}.
點評:本題考查了交集及其運算,考查了一元二次不等式的解法,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

閱讀程序框圖(如圖所示),已知輸入x的值為1+log32,則輸出y的結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果集合A={x|x≤1},則下面式子正確的是( 。
A、0⊆AB、{0}∈A
C、φ∈AD、{0}⊆A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=log 
1
3
2,b=log 
1
2
3,c=(
1
3
0.3,則( 。
A、a<b<c
B、a<c<b
C、b<c<a
D、b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算機成本不斷降低,若每隔3年計算機價格降低原來的
1
3
,現(xiàn)在價格為8100的計算機,則9年后價格可將為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將邊長為2,銳角為60°的菱形ABCD沿較短對角線BD折成四面體ABCD,點E、F分別為AC、BD的中點,給出下列三個命題:
①EF∥AB;
②EF是異面直線AC與BD的公垂線;
③AC垂直于截面BDE.
其中正確命題的序號是
 
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓方程為
x2
4
+
y2
8
=1,過原點且傾斜角為θ和π-θ(0<θ<
π
2
)的兩直線分別交橢圓于A,C和B,D兩點.
(1)用θ表示四邊形ABCD的面積S;
(2)當(dāng)θ∈(0,
π
2
)時,求S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l的參數(shù)方程為
x=5-
3
2
t
y=-
3
+
1
2
t
(t參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ4cos(θ-
π
3
).
(1)判斷直線與圓的位置關(guān)系;
(2)若點P(x,y)在圓C上,求
3
x+y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點P(0,2)的直線和拋物線y2=8x交于A,B兩點,若線段AB的中點在直線x=2上,求弦AB的長.

查看答案和解析>>

同步練習(xí)冊答案