【題目】對于平面α、β、γ和直線a、b、m、n,下列命題中真命題是( 。
A.若a⊥m,a⊥n,mα,nα,則a⊥α
B.若a∥b,bα,則a∥α
C.若aβ,bβ,a∥α,b∥α,則β∥α
D.若α∥β,α∩γ=a,β∩γ=b則a∥b
【答案】D
【解析】若a⊥m,a⊥n,mα,nα,由線面垂直的判定定理知,只有當m和n為相交線時,才有a⊥α,A錯誤;
若a∥b,bα,此時由線面平行的判定定理可知,只有當a在平面α外時,才有a∥α,B錯誤;
若aβ,bβ,a∥α,b∥α,此時由面面平行的判定定理可知,只有當a、b為相交線時,才有β∥α,C錯誤;
由面面平行的性質(zhì)定理:若兩平面平行,第三個平面與他們都相交,則交線平行,可判斷若α∥β,α∩γ=a,β∩γ=b則a∥b為真命題,D正確
故選 D
【考點精析】本題主要考查了命題的真假判斷與應用和空間中直線與直線之間的位置關(guān)系的相關(guān)知識點,需要掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系;相交直線:同一平面內(nèi),有且只有一個公共點;平行直線:同一平面內(nèi),沒有公共點;異面直線: 不同在任何一個平面內(nèi),沒有公共點才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)α,β,γ為兩兩不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個命題,其中真命題有( )
①若mα,nβ,α⊥β,則m⊥n;
②若m⊥α,n∥β且α∥β,則m⊥n;
③若α∥β,lα,則l∥β;
④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,則m∥n.
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】點M(3,﹣2,1)關(guān)于面yoz對稱的點的坐標是( )
A.(﹣3,﹣2,1)
B.(﹣3,2,﹣1)
C.(﹣3,2,1)
D.(﹣3,﹣2,﹣1)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)是定義在實數(shù)集R上的偶函數(shù),且在[0,+∞)上是減函數(shù),若f(a)≥f(3),則實數(shù)a的取值范圍是( )
A.(0,3]
B.(﹣∞,﹣3]∪[3,+∞)
C.R
D.[﹣3,3]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足f(x+6)=f(x).當﹣3≤x<﹣1時,f(x)=﹣(x+2)2 , 當﹣1≤x<3時,f(x)=x.則f(1)+f(2)+…+f(2015)=( )
A.333
B.336
C.1678
D.2015
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】原命題為“若z1 , z2互為共軛復數(shù),則|z1|=|z2|”,關(guān)于其逆命題,否命題,逆否命題真假性的判斷依次如下,正確的是( )
A.真,假,真
B.假,假,真
C.真,真,假
D.假,假,假
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)為奇函數(shù),且在(0,+∞)上是遞增的,若f(﹣3)=0,則xf(x)>0的解集是( )
A.{x|﹣3<x<0或x>3}
B.{ x|x<﹣3或0<x<3}
C.{ x|x<﹣3或x>3}
D.{ x|﹣3<x<0或0<x<3}
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com