14、設(shè)f(x)定義在R上的奇函數(shù),且f(x+3)=-f(x),則f(2010)=
0
分析:由題意可得函數(shù)是奇函數(shù)所以f(0)=0,結(jié)合題意(x+3)=-f(x)可得,函數(shù)是周期函數(shù)且周期為6,進(jìn)而得到答案.
解答:解:因?yàn)閒(x)定義在R上的奇函數(shù),
所以f(-x)=-f(x),所以f(0)=0.
又因?yàn)閒(x+3)=-f(x),
所以f(x+6)=f[(x+3)+3]=-f(x+3)=f(x).
即f(x+6)=f(x).
所以f(x)是周期函數(shù),且周期為6.
所以f(2010)=f(0)=0.
故答案為:0..
點(diǎn)評(píng):解決此類(lèi)問(wèn)題的關(guān)鍵是熟練掌握函數(shù)的性質(zhì),如奇偶性、單調(diào)性、周期性等性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)定義在R上的偶函數(shù),且f(x+3)=-
1f(x)
,又當(dāng)x∈(0,3]時(shí),f(x)=2x,則f(2007)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)定義在R+上,對(duì)于任意a、b∈R+,有f(ab)=f(a)+f(b)求證:
(1)f(1)=0;
(2)f(
1x
)=-f(x);
(3)若x∈(1,+∞)時(shí),f(x)<0,則f(x)在(1,+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)f(x)定義在R+上,對(duì)于任意a、b∈R+,有f(ab)=f(a)+f(b)求證:
(1)f(1)=0;
(2)f(數(shù)學(xué)公式)=-f(x);
(3)若x∈(1,+∞)時(shí),f(x)<0,則f(x)在(1,+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高三數(shù)學(xué)第一輪基礎(chǔ)知識(shí)訓(xùn)練(30)(解析版) 題型:解答題

設(shè)f(x)定義在R上的偶函數(shù),且,又當(dāng)x∈(0,3]時(shí),f(x)=2x,則f(2007)=   

查看答案和解析>>

同步練習(xí)冊(cè)答案