3.角α的頂點與直角坐標系的原點重合,始邊與x軸的非負半軸重合,“角α的終邊在射線x+3y=0(x≥0)上”是“sin2α=-$\frac{3}{5}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)三角函數(shù)的定義以及充分條件和必要條件的定義進行判斷即可.

解答 解:∵角α的終邊在射線x+3y=0(x≥0)上,
∴設點P(3,-1),則sinα=-$\frac{1}{\sqrt{10}}$,cosα=$\frac{3}{\sqrt{10}}$,則sin2α=2sinαcosα=2×(-$\frac{1}{\sqrt{10}}$)($\frac{3}{\sqrt{10}}$)=-$\frac{3}{5}$,即充分性成立,
當M(-3,1),則sinα=$\frac{1}{\sqrt{10}}$,cosα=-$\frac{3}{\sqrt{10}}$,此時滿足sin2α=-$\frac{3}{5}$,但M(-3,1)不在射線x+3y=0(x≥0)上,即必要性不成立,
即“角α的終邊在射線x+3y=0(x≥0)上”是“sin2α=-$\frac{3}{5}$”的充分不必要條件,
故選:A.

點評 本題主要考查充分條件和必要條件的判斷,結(jié)合三角函數(shù)的定義是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.學校為了了解高一新生男生得到體能狀況,從高一新生中抽取若干名男生進行鉛球測試,把所得數(shù)據(jù)(精確到0.1米)進行整理后,分成6組畫出頻率分布直方圖的一部分(如圖),已知從左到右前5個小組的頻率分別為0.04,0.10,0.14,0.28,0.30,第6小組的頻數(shù)是7.
(1)請將頻率分布直方圖補充完整;
(2)該校參加這次鉛球測試的男生有多少人?
(3)若成績在8.0米以上(含8.0米)的為合格,試求這次鉛球測試的成績的合格率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是( 。ヽm2( 。
A.80B.76C.72D.68

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,在多面體A1C1D1-ABCD中,平面A1C1D1∥平面ABCD,AA1∥DD1∥CC1,AA1⊥平面ABCD,四邊形為矩形,AD=1,DC=2,DD1=3.
(1)已知$\overrightarrow{{A}_{1}E}$=λ$\overrightarrow{{A}_{1}{C}_{1}}$,且DE⊥A1C1,求實數(shù)λ的值;
(2)已知H是平面A1BC1內(nèi)的點,求DH的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設集合M={x|x2<x},N={x||x|<1},則(  )
A.M∩N=∅B.M∪N=MC.M∩N=MD.M∪N=R

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.在《九章算術》方田章圓田術(劉徽注)中指出:“割之彌細,所失彌少.割之又割,以至不能割,則與圓周合體而無所失矣.”注述中所用的割圓術是一種無限與有限的轉(zhuǎn)化過程,比如在$\sqrt{2+\sqrt{2+\sqrt{2+…}}}$中“…”即代表無限次重復,但原式卻是個定值x,這可以通過方程$\sqrt{2+x}$=x確定出來x=2,類似地不難得到$\frac{1}{1+\frac{1}{1+…}}$=$\frac{\sqrt{5}+1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.在△ABC中,∠B=120°,a=3,c=5,則sinA+sinC的值為$\frac{4\sqrt{3}}{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知△ABC的頂點A(5,1),AB邊上的中線CM所在直線方程為2x-y-5=0,∠B的平分線BN所在直線方程為x-2y-5=0.求:
(1)頂點B的坐標;
(2)直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知數(shù)列{an}為等比數(shù)列,Sn是它的前n項和.設Tn=S1+S2+…+Sn,若a2•a3=2a1,且a4與2a7的等差中項為$\frac{5}{4}$,則T6=160.5.

查看答案和解析>>

同步練習冊答案