【題目】已知a∈R,i是虛數(shù)單位,命題p:在復(fù)平面內(nèi),復(fù)數(shù)z1=a+ 對應(yīng)的點(diǎn)位于第二象限;命題q:復(fù)數(shù)z2=a﹣i的模等于2,若p∧q是真命題,則實(shí)數(shù)a的值等于(
A.﹣1或1
B.
C.
D.

【答案】D
【解析】解:命題p:在復(fù)平面內(nèi),復(fù)數(shù)z1=a+ =a+ =a+1+i對應(yīng)的點(diǎn)位于第二象限,∴a+1<0,解得a<﹣1. 命題q:復(fù)數(shù)z2=a﹣i的模等于2,∴ =2,解得a=±
若p∧q是真命題,∴ ,解得a=﹣
故選:D.
【考點(diǎn)精析】本題主要考查了復(fù)合命題的真假的相關(guān)知識點(diǎn),需要掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時為真,其他情況時為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時為假,其他情況時為真才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某城市小區(qū)有一個矩形休閑廣場,AB=20米,廣場的一角是半徑為16米的扇形BCE綠化區(qū)域,為了使小區(qū)居民能夠更好的在廣場休閑放松,現(xiàn)決定在廣場上安置兩排休閑椅,其中一排是穿越廣場的雙人靠背直排椅MN(寬度不計(jì)),點(diǎn)M在線段AD上,并且與曲線CE相切;另一排為單人弧形椅沿曲線CN(寬度不計(jì))擺放.已知雙人靠背直排椅的造價(jià)每米為2a元,單人弧形椅的造價(jià)每米為a元,記銳角∠NBE=θ,總造價(jià)為W元.
(1)試將W表示為θ的函數(shù)W(θ),并寫出cosθ的取值范圍;
(2)如何選取點(diǎn)M的位置,能使總造價(jià)W最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的實(shí)系數(shù)方程x2+ax+b=0有兩個根,一個根在區(qū)間(0,1)內(nèi),另一根在區(qū)間(1,3)內(nèi),記點(diǎn)(a,b)對應(yīng)的區(qū)域?yàn)镾.
(1)設(shè)z=2a﹣b,求z的取值范圍;
(2)過點(diǎn)(﹣5,1)的一束光線,射到x軸被反射后經(jīng)過區(qū)域S,求反射光線所在直線l經(jīng)過區(qū)域S內(nèi)的整點(diǎn)(即橫縱坐標(biāo)為整數(shù)的點(diǎn))時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀如圖的程序框圖,輸出結(jié)果S的值為(
A.﹣1008
B.1
C.﹣1
D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是菱形,是矩形,平面平面,,,的中點(diǎn).

(1)求證:;

(2)在線段上是否存在點(diǎn),使二面角的大小為,若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種植園在芒果臨近成熟時,隨機(jī)從一些芒果樹上摘下100個芒果,其質(zhì)量分別在,,,(單位:克)中,經(jīng)統(tǒng)計(jì)得頻率分布直方圖如圖所示.

(1) 試估計(jì)這組數(shù)據(jù)的眾數(shù)、中位數(shù)、平均數(shù);

(2)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計(jì)總體,該種植園中還未摘下的芒果大約還有個,經(jīng)銷商提出如下兩種收購方案:

A:所有芒果以元/千克收購;

B:對質(zhì)量低于克的芒果以元/個收購,高于或等于克的以元/個收購.

通過計(jì)算確定種植園選擇哪種方案獲利更多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在原點(diǎn)處的切線為.

(1)證明:曲線軸正半軸有交點(diǎn);

(2)設(shè)曲線軸正半軸的交點(diǎn)為,曲線在點(diǎn)處的切線為直線,求證:曲線上的點(diǎn)都不在直線的上方;

(3)若關(guān)于的方程為正實(shí)數(shù))有不等實(shí)根,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù)),圓的標(biāo)準(zhǔn)方程為.以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.

(1)求直線和圓的極坐標(biāo)方程;

(2)若射線與的交點(diǎn)為,與圓的交點(diǎn)為,且點(diǎn)恰好為線段的中點(diǎn),求的值.

查看答案和解析>>

同步練習(xí)冊答案