已知數(shù)列a>0,b>0,a1=1,前P項和Sn=
n+1
2
an

(1)求{an}的通項公式;
(2)求數(shù)列{
an
2n
}的前n項和.
考點:數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知得
an
an-1
=
n
n-1
,由此利用累乘法得
an
a1
=n
,從而an=n.
(2)設(shè)數(shù)列數(shù)列{
an
2n
}的前n項和Tn,利用錯位相減法能求出數(shù)列{
an
2n
}的前n項和.
解答: 解:(1)∵Sn=
n+1
2
anSn-1=
n
2
an-1(n≥2)
,
an=
n+1
2
an-
n
2
an-1
,
即:
an
an-1
=
n
n-1
,
a2
a1
=
2
1
,
a3
a2
=
3
2
an
an-1
=
n
n-1

累乘得:
an
a1
=n
,
∵a1=1,
∴an=n.
(2)設(shè)數(shù)列數(shù)列{
an
2n
}的前n項和Tn,
Tn=1•(
1
2
)1+2•(
1
2
)2+3•(
1
2
)3+…+(n-1)(
1
2
)n-1+n•(
1
2
)n

1
2
Tn=1•(
1
2
)2+2•(
1
2
)3+3•(
1
2
)4+…+(n-1)(
1
2
)n+n•(
1
2
)n+1
,
兩式相減得:
1
2
Tn=(
1
2
)1+(
1
2
)2+(
1
2
)3+…+(
1
2
)n-n•(
1
2
)n+1=
1
2
•[1-(
1
2
)
n
]
1-
1
2
-n•(
1
2
)n+1=1-(1+
n
2
)(
1
2
)n

Tn=2-(n+2)(
1
2
)n
點評:本題考查數(shù)列的通項公式的求法,考查數(shù)列的前n項和的求法,解題時要認真審題,注意錯位相減法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且(a-b)2=c2-4,C=120°,則ab的值為(  )
A、4
B、
2
3
C、
4
3
D、8-4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|x+1≥0},N={x|x2<4},則M∩N=( 。
A、(-∞,-1)
B、(2,+∞)
C、(-1,2)
D、[-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlg(x+
1+x2
)且f(2-a)<f(-1),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一塊鍍鋅鐵皮的邊角料ABCD,其中AB、CD、DA都是線段,曲線段BC是拋物線的一部分,且點B是該拋物線的頂點,BA所在直線是該拋物線的對稱軸,經(jīng)測量,AB=2米,AD=3米,AB⊥AD,點C到AD、AB的距離CH、CR的長均為1米,現(xiàn)要用這塊邊角料截一個矩形AEFG(其中點F在曲線段BC或線段CD上,點E在線段AD上,點G在線段AB上).設(shè)BG的長為x米,矩形AEFG的面積為S平方米.
(1)將S表示為x的函數(shù);
(2)當(dāng)x為多少米時,S取得最大值,最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,∠BAC=90°,AD⊥BC,垂足為D,E是AC上的一點,若AF⊥BE,垂足為F,求證:∠BFD=∠C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos(ωx-
π
3
)+sin(ωx-
π
6
)-2cos2
ωx
2
,x∈R(ω>0),且函數(shù)y=f(x)的圖象與直線y=-1的兩個相鄰交點間的距離為
π
2

(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)將函數(shù)g(x)=f(x)+1的圖象向左平移m(m>0)個單位后,所得圖象關(guān)于原點中心對稱,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)①f(x)=5x2;②f(x)=5cosx;③f(x)=5ex;④f(x)=5lnx,其中對于f(x)定義域內(nèi)的任意一個自變量x1,都存在唯一的自變量x2,使
f(x1)f(x2)
=5成立的函數(shù)有(  )個.
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn為數(shù)列{an}的前n項和,且滿足a1=1,anan+1=3n(n∈N+),則S2014=(  )
A、2×31007-2
B、2×31007
C、
32014-1
2
D、
32014+1
2

查看答案和解析>>

同步練習(xí)冊答案