f(x)=3x2x+1,g(x)=2x2x-1,則f(x)與g(x)的大小關(guān)系是f(x)__________g(x).

解析:f(x)-g(x)=3x2x+1-(2x2x-1)

=(x-1)2+1>0.

答案:>

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012年高考預(yù)測系列試題(數(shù)學(xué))高考預(yù)測試卷(7)(解析版) 題型:填空題

已知函數(shù)f(x)=3x2+2x+1,若f(x)dx=2f(a)成立,則a=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江蘇省高一第二學(xué)期第一次月考數(shù)學(xué)試 題型:解答題

已知函數(shù)f(x)=3x2+bx+c,不等式f(x)>0的解集為(-∞,-2)∪(0,+∞). 

(1) 求函數(shù)f(x)的解析式;

(2) 已知函數(shù)g(x)=f(x)+mx-2在(2,+∞)上單調(diào)增,求實數(shù)m的取值范圍;

(3) 若對于任意的x∈[-2,2],f(x)+n≤3都成立,求實數(shù)n的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的導(dǎo)數(shù)f′(x)=3x2-3ax,f(0)=b,a,b為實數(shù),1<a<2.

(1)若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;

(2)在(1)的條件下,求經(jīng)過點P(2,1)且與曲線f(x)相切的直線l的方程;

(3)設(shè)函數(shù)F(x)=[f′(x)+6x+1]·e2x,試判斷函數(shù)F(x)的極值點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省高三8月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

(1)求f(x)的解析式;

(2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中設(shè)切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依題意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)設(shè)切點為(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

又切線過點A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

則g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

畫出草圖知,當(dāng)-6<m<2時,m=-2x3+6x2-6有三解,

所以m的取值范圍是(-6,2).

 

查看答案和解析>>

同步練習(xí)冊答案