【題目】在幾何體中,如圖,四邊形為平行四邊形,,平面平面平面,

1)若三棱錐的體積為1,求;

2)求證:

【答案】1;(2)證明見(jiàn)解析

【解析】

1)利用面面平行的性質(zhì)定理可得,,再利用平行線的傳遞性可得,再利用線面垂直的性質(zhì)定理可得,又,根據(jù)線面垂直的判定定理可得平面,利用三棱錐的體積公式即可求解.

2)由(1)可知,由,平面,可得,,利用線面垂直的判定定理可得平面,即證.

解:(1,

確定平面確定平面.

平面平面,平面平面,

平面平面

,同理,,

四邊形為平行四邊形.

又四邊形為平行四邊形,,

四邊形為平行四邊形.

平面平面,

平面,.

,且平面.

設(shè),在中,

.

,

.

2)證明:由(1)得平面平面,

.

又四邊形都為平行四邊形,

.

平面,平面

.

,平面平面,

平面,

平面

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的焦距為2,過(guò)右焦點(diǎn)和短軸一個(gè)端點(diǎn)的直線的斜率為,為坐標(biāo)原點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)斜率為的直線與橢圓相交于兩點(diǎn),記面積的最大值為,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且以原點(diǎn)為圓心,以短軸長(zhǎng)為直徑的圓過(guò)點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若過(guò)點(diǎn)的直線與橢圓交于不同的兩點(diǎn),且與圓沒(méi)有公共點(diǎn),設(shè)為橢圓上一點(diǎn),滿足為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】居民消費(fèi)價(jià)格指數(shù),簡(jiǎn)稱CPI,是一個(gè)反映居民家庭一般所購(gòu)買的消費(fèi)品和服務(wù)項(xiàng)目?jī)r(jià)格水平變動(dòng)情況的宏觀經(jīng)濟(jì)指標(biāo).一般來(lái)說(shuō),CPI的高低直接影響著國(guó)家的宏觀經(jīng)濟(jì)調(diào)控措施的出臺(tái)與力度,下圖是國(guó)家統(tǒng)計(jì)局發(fā)布的我國(guó)2009年至2018年這十年居民消費(fèi)價(jià)格指數(shù)的折線圖.

則下列對(duì)該折線圖分析正確的是(

A.這十年的居民消費(fèi)價(jià)格指數(shù)的中位數(shù)為2013年的居民消費(fèi)價(jià)格指數(shù)

B.這十年的居民消費(fèi)價(jià)格指數(shù)的眾數(shù)為2015年的居民消費(fèi)價(jià)格指數(shù)

C.2009年~2012年這4年居民消費(fèi)價(jià)格指數(shù)的方差小于2015年~2018年這4年居民消費(fèi)價(jià)格指數(shù)的方差

D.2011年~2013年這3年居民消費(fèi)價(jià)格指數(shù)的平均值大于2016年~2018年這3年居民消費(fèi)價(jià)格指數(shù)的平均值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,已知是直角三角形,側(cè)面是矩形,,.

1)證明:.

2是棱的中點(diǎn),求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】七巧板是中國(guó)古代勞動(dòng)人民的發(fā)明,其歷史至少可以追溯到公元前一世紀(jì),后清陸以湉《冷廬雜識(shí)》卷一中寫道近又有七巧圖,其式五,其數(shù)七,其變化之式多至千余18世紀(jì),七巧板流傳到了國(guó)外,被譽(yù)為東方魔板,至今英國(guó)劍橋大學(xué)的圖書(shū)館里還珍藏著一部《七巧新譜》.完整圖案為一正方形(如圖):五塊等腰直角三角形、一塊正方形和一塊平行四邊形,如果在此正方形中隨機(jī)取一點(diǎn),那么此點(diǎn)取自陰影部分的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在單位圓Ox2+y21上任取一點(diǎn)Pxy),圓Ox軸正向的交點(diǎn)是A,設(shè)將OA繞原點(diǎn)O旋轉(zhuǎn)到OP所成的角為θ,記x,y關(guān)于θ的表達(dá)式分別為xfθ),ygθ),則下列說(shuō)法正確的是(  )

A.xfθ)是偶函數(shù),ygθ)是奇函數(shù)

B.xfθ)在為增函數(shù),ygθ)在為減函數(shù)

C.fθ+gθ≥1對(duì)于恒成立

D.函數(shù)t2fθ+g2θ)的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某科研團(tuán)隊(duì)對(duì)例新冠肺炎確診患者的臨床特征進(jìn)行了回顧性分析.其中名吸煙患者中,重癥人數(shù)為人,重癥比例約為;名非吸煙患者中,重癥人數(shù)為人,重癥比例為.根據(jù)以上數(shù)據(jù)繪制列聯(lián)表,如下:

吸煙人數(shù)

非吸煙人數(shù)

總計(jì)

重癥人數(shù)

30

120

150

輕癥人數(shù)

100

800

900

總計(jì)

130

920

1050

(1)根據(jù)列聯(lián)表數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為新冠肺炎重癥和吸煙有關(guān)?

(2)已知每例重癥患者平均治療費(fèi)用約為萬(wàn)元,每例輕癥患者平均治療費(fèi)用約為萬(wàn)元.現(xiàn)有吸煙確診患者20人,記這名患者的治療費(fèi)用總和為,求.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了有效地加強(qiáng)高中生自主管理能力,推出了一系列措施,其中自習(xí)課時(shí)間的自主管理作為重點(diǎn)項(xiàng)目,學(xué)校有關(guān)處室制定了高中生自習(xí)課時(shí)間自主管理方案”.現(xiàn)準(zhǔn)備對(duì)該方案進(jìn)行調(diào)查,并根據(jù)調(diào)查結(jié)果決定是否啟用該方案,調(diào)查人員分別在各個(gè)年級(jí)隨機(jī)抽取若干學(xué)生對(duì)該方案進(jìn)行評(píng)分,并將評(píng)分分成,,七組,繪制成如圖所示的頻率分布直方圖.

相關(guān)規(guī)則為①采用百分制評(píng)分,內(nèi)認(rèn)定為對(duì)該方案滿意,不低于80分認(rèn)定為對(duì)該方案非常滿意,60分以下認(rèn)定為對(duì)該方案不滿意;②學(xué)生對(duì)方案的滿意率不低于即可啟用該方案;③用樣本的頻率代替概率.

1)從該校學(xué)生中隨機(jī)抽取1人,求被抽取的這位同學(xué)非常滿意該方案的概率,并根據(jù)頻率分布直方圖求學(xué)生對(duì)該方案評(píng)分的中位數(shù).

2)根據(jù)所學(xué)統(tǒng)計(jì)知識(shí),判斷該校是否啟用該方案,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案