分析 要證明當(dāng)α>-1時(shí),(1+α)n≥1+nα,先證明n=1時(shí),(1+α)n≥1+nα成立,再假設(shè)n=k時(shí),(1+α)n≥1+nx成立,進(jìn)而證明出n=k+1時(shí),(1+α)n≥1+nα也成立,即可得到對(duì)于任意正整數(shù)n:當(dāng)α>-1時(shí),(1+α)n≥1+nα.
解答 解:因?yàn)椋?+α)n≥1+αn為關(guān)于n的不等式,x為參數(shù),以下用數(shù)學(xué)歸納法證明:
(ⅰ)當(dāng)n=1時(shí),原不等式成立;
當(dāng)n=2時(shí),左邊=1+2α+α2,右邊=1+2α,
因?yàn)閤2≥0,所以左邊≥右邊,原不等式成立;
(ⅱ)假設(shè)當(dāng)n=k時(shí),不等式成立,即(1+α)k≥1+kα,
則當(dāng)n=k+1時(shí),
∵α>-1,
∴1+α>0,于是在不等式(1+α)k≥1+kα兩邊同乘以1+α得
(1+α)k•(1+α)≥(1+kα)•(1+α)=1+(k+1)α+kα2≥1+(k+1)α,
所以(1+α)k+1≥1+(k+1)α.即當(dāng)n=k+1時(shí),不等式也成立.
綜合(。áⅲ┲,對(duì)一切正整數(shù)n,不等式都成立
點(diǎn)評(píng) 數(shù)學(xué)歸納法常常用來(lái)證明一個(gè)與自然數(shù)集N相關(guān)的性質(zhì),其步驟為:設(shè)P(n)是關(guān)于自然數(shù)n的命題,若1)(奠基) P(n)在n=1時(shí)成立;2)(歸納) 在P(k)(k為任意自然數(shù))成立的假設(shè)下可以推出P(k+1)成立,則P(n)對(duì)一切自然數(shù)n都成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{7\sqrt{2}}{10}$ | B. | -$\frac{\sqrt{2}}{10}$ | C. | $\frac{\sqrt{2}}{10}$ | D. | $\frac{7\sqrt{2}}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com