(本小題滿分12分)
如圖,在三棱錐中,,,,, 點(diǎn),分別在棱上,且,

(Ⅰ)求證:平面PAC
(Ⅱ)當(dāng)的中點(diǎn)時,求與平面所成的角的正弦值;
(Ⅲ)是否存在點(diǎn)使得二面角為直二面角?并說明理由.
(1)要證明線面垂直,一般可以通過線線垂直來證明,也可以通過面面垂直來證明,該試題的關(guān)鍵是證明AC⊥BC (2)
(3) 存在點(diǎn)E使得二面角是直二面角

試題分析:解:(法1)(Ⅰ)∵,,∴PA⊥底面ABC,∴PA⊥BC.又,∴AC⊥BC.∴BC⊥平面PAC.
(Ⅱ)∵D為PB的中點(diǎn),DE//BC,∴,
又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,垂足為點(diǎn)E.
∴∠DAE是AD與平面PAC所成的角,∵PA⊥底面ABC,
∴PA⊥AB,又PA=AB,∴△ABP為等腰直角三角形,
,∴在Rt△ABC中,,∴.
∴在Rt△ADE中,,
與平面所成的角的大小.
(Ⅲ)∵AE//BC,又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,
又∵AE平面PAC,PE平面PAC,∴DE⊥AE,DE⊥PE,
∴∠AEP為二面角的平面角,∵PA⊥底面ABC,
∴PA⊥AC,∴.∴在棱PC上存在一點(diǎn)E,使得AE⊥PC,
這時,故存在點(diǎn)E使得二面角是直二面角.
(法2)如圖,以A為原煤點(diǎn)建立空間直角坐標(biāo)系,設(shè),
由已知可得,,.
(Ⅰ)∵,,∴
∴BC⊥AP.又∵,∴BC⊥AC,∴BC⊥平面PAC.
(Ⅱ)∵D為PB的中點(diǎn),DE//BC,∴E為PC的中點(diǎn),
,,∴又由(Ⅰ)知,BC⊥平面PAC,
∴DE⊥平面PAC,垂足為點(diǎn)E.∴∠DAE是AD與平面PAC所成的角,
,

與平面所成的角的大小。
(Ⅲ)∵AE//BC,又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,
又∵AE平面PAC,PE平面PAC,∴DE⊥AE,DE⊥PE,
∴∠AEP為二面角的平面角,∵PA⊥底面ABC,
∴PA⊥AC,∴.∴在棱PC上存在一點(diǎn)E,
使得AE⊥PC,這時
故存在點(diǎn)E使得二面角是直二面角.
點(diǎn)評:解決的關(guān)鍵是利用已知中的線線垂直來證明線面垂直,同時得到線面角的大小,結(jié)合三角形求解,同時要結(jié)合三垂線定理得到二面角的大小,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,底面為直角梯形,且,,側(cè)面底面. 若.

(Ⅰ)求證:平面;
(Ⅱ)側(cè)棱上是否存在點(diǎn),使得平面?若存在,指出點(diǎn) 的位置并證明,若不存在,請說明理由;
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,⊥平面,的中點(diǎn), 的中點(diǎn),底面是菱形,對角線,交于點(diǎn)

求證:(1)平面平面
(2)平面⊥平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD是正方形,PB^平面ABCD,MA^平面ABCD,PB=AB=2MA.

求證:(1)平面AMD∥平面BPC;(2)平面PMD^平面PBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
如圖,在四棱錐中,平面平面,是等邊三角形,已知,

(Ⅰ)設(shè)上的一點(diǎn),證明:平面平面;
(Ⅱ)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示在四棱錐P—ABCD中,平面PAB⊥平面ABCD,底面ABCD是邊長為2的正方形,△PAB為等邊三角形。(12分)

(1)求PC和平面ABCD所成角的大;
(2)求二面角B─AC─P的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題12分)
如圖,在中,邊上的高,,沿翻折,使得得幾何體

(Ⅰ)求證:;
(Ⅱ)求點(diǎn)D到面ABC的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共12分)
如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,QAD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD=2,BC=AD=1,CD=

(1)求證:平面PQB⊥平面PAD;
(2)若二面角M-BQ-C為30°,設(shè)PM=tMC,試確定t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知表示兩個互相垂直的平面,表示一對異面直線,則的一個充分條件是(  )
A.     B.
C.      D.

查看答案和解析>>

同步練習(xí)冊答案