已知函數(shù)
(1)判斷函數(shù)的奇偶性,并說(shuō)明理由。
(2)若,求使成立的集合。

(1) 是奇函數(shù);(2)

解析試題分析:(1)首先求出的定義域關(guān)于原點(diǎn)對(duì)稱,然后求關(guān)系,利用對(duì)數(shù)的運(yùn)算法則將函數(shù)轉(zhuǎn)化為,再由函數(shù)奇偶性的定義判斷是奇函數(shù);
(2)由求出,利用函數(shù)的定義域和單調(diào)性求出不等式的解集;易忘記定義域.
試題解析:
(1)由的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/cd/9/cr3xv2.png" style="vertical-align:middle;" />

所以是奇函數(shù)
(2)


 

解得
所以使成立的集合.
考點(diǎn):對(duì)數(shù)函數(shù)性質(zhì),復(fù)合函數(shù)奇偶性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

為了在夏季降溫和冬季供暖時(shí)減少能源消耗,房屋的屋頂和外墻需要建造隔熱層,某棟建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬(wàn)元.該建筑物每年的能源消耗費(fèi)用(單位:萬(wàn)元)與隔熱層厚度(單位:)滿足關(guān)系:
若不建隔熱層,每年能源消耗費(fèi)用為8萬(wàn)元。設(shè)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和。
(Ⅰ)求的值及的表達(dá)式;
(Ⅱ)隔熱層修建多厚時(shí),總費(fèi)用最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)                  
(2)計(jì)算

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)的定義域;
(2)若關(guān)于的不等式的解集是,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),且的解集為.
(Ⅰ)求的值;
(Ⅱ)若,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

島A觀察站發(fā)現(xiàn)在其東南方向有一艘可疑船只,正以每小時(shí)10海里的速度向東南方向航行,觀察站即刻通知在島A正南方向B處巡航的海監(jiān)船前往檢查.接到通知后,海監(jiān)船測(cè)得可疑船只在其北偏東75°方向且相距10海里的C處,隨即以每小時(shí)10 海里的速度前往攔截.
(I)問(wèn):海監(jiān)船接到通知時(shí),距離島A多少海里?
(II)假設(shè)海監(jiān)船在D處恰好追上可疑船只,求它的航行方向及其航行的時(shí)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某醫(yī)藥研究所開(kāi)發(fā)一種新藥,據(jù)監(jiān)測(cè),如果成人按規(guī)定劑量服用該藥,服藥后每毫升血液中的含藥量與服藥后的時(shí)間之間近似滿足如圖所示的曲線.其中是線段,曲線段是函數(shù)是常數(shù)的圖象.

(1)寫出服藥后每毫升血液中含藥量關(guān)于時(shí)間的函數(shù)關(guān)系式;
(2)據(jù)測(cè)定:每毫升血液中含藥量不少于時(shí)治療有效,假若某病人第一次服藥為早上,為保持療效,第二次服藥最遲是當(dāng)天幾點(diǎn)鐘?
(3)若按(2)中的最遲時(shí)間服用第二次藥,則第二次服藥后再過(guò),該病人每毫升血液中含藥量為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的值域;
(2)若關(guān)于的方程有解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知(a是常數(shù),a∈R)
(Ⅰ)當(dāng)a=1時(shí)求不等式的解集;
(Ⅱ)如果函數(shù)恰有兩個(gè)不同的零點(diǎn),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案