12.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)F2的坐標(biāo)是(4,0),過(guò)F2引圓x2+y2=a2的兩條切線,切點(diǎn)分別為A,B,∠AOB=120°(O為坐標(biāo)原點(diǎn)),則雙曲線的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{64}-\frac{{y}^{2}}{48}=1$.

分析 根據(jù)題意可先求得∠AOF利用OF和OA,在直角三角形中求得雙曲線的離心率.然后求解雙曲線方程.

解答 解:如圖,由題知OA⊥AF,OB⊥BF且∠AOB=120°,
∴∠AOF=60°,又OA=a,
OF=c,
∴$\frac{a}{c}$=$\frac{OA}{OF}$=cos60°=$\frac{1}{2}$,
∴$\frac{c}{a}$=2.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)F2的坐標(biāo)是(4,0),可得c=4,則a=8,則b2=48,
所求雙曲線方程為:$\frac{{x}^{2}}{64}-\frac{{y}^{2}}{48}=1$.
故答案為:$\frac{{x}^{2}}{64}-\frac{{y}^{2}}{48}=1$.

點(diǎn)評(píng) 本題主要考查了雙曲線的簡(jiǎn)單性質(zhì).解題的過(guò)程中采用了數(shù)形結(jié)合的思想,使問(wèn)題的解決更直觀.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知圓(x+1)2+y2=2,則其圓心和半徑分別為( 。
A.(1,0),2B.(-1,0),2C.(1,0),$\sqrt{2}$D.(-1,0),$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知右焦點(diǎn)為F2(c,0)的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過(guò)點(diǎn)(1,$\frac{3}{2}$),且橢圓C關(guān)于直線x=c對(duì)稱的圖形過(guò)坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)($\frac{1}{2}$,0)作直線l與橢圓C交于E,F(xiàn)兩點(diǎn),線段EF的中點(diǎn)為M,點(diǎn)A是橢圓C的右頂點(diǎn),求直線MA的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知角θ的頂點(diǎn)與原點(diǎn)重合,始邊與x軸正半軸重合,終邊過(guò)點(diǎn)P(-1,2),則tan2θ=( 。
A.$\frac{4}{3}$B.$\frac{4}{5}$C.$-\frac{4}{5}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知$f(x)=sin(2017x+\frac{π}{6})+cos(2017x-\frac{π}{3})$的最大值為A,若存在實(shí)數(shù)x1,x2使得對(duì)任意實(shí)數(shù)x總有f(x1)≤f(x)≤f(x2)成立,則A|x1-x2|的最小值為(  )
A.$\frac{π}{2017}$B.$\frac{2π}{2017}$C.$\frac{4π}{2017}$D.$\frac{π}{4034}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知全集U=R,集M={x|x-3≥0},N={x|-1≤x<4}.
(1)求集合M∩N,M∪N;
(2)求集合∁UN,(∁UN)∩M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓C1:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{^{2}}$=1(0<b<2)的離心率為$\frac{\sqrt{3}}{2}$,拋物線C2:x2=2py(p>0)的焦點(diǎn)是橢圓的頂點(diǎn).
(1)求拋物線的方程;
(2)過(guò)點(diǎn)M(-1,0)作拋物線的切線l,求切線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若一個(gè)底面為正三角形、側(cè)棱與底面垂直的棱柱的三視圖如圖所示,則這個(gè)棱柱的側(cè)面積為72.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)$f(x)=2{sin^2}x+\sqrt{3}sin2x+1$.求:
(1)f(x)的單調(diào)遞增區(qū)間;
(2)f(x)在$[0,\frac{π}{2}]$上的最值.

查看答案和解析>>

同步練習(xí)冊(cè)答案