在10個球中有6個紅球和4個白球(各不相同),不放回地依次摸出2個球,在第一次摸出紅球的條件下,第2次也摸到紅球的概率為( 。
A.   B.   C.   D.
D
先求出“第一次摸到紅球”的概率為,設(shè)“在第一次摸出紅球的條件下,第二次也摸到紅球”的概率是,再求“第一次摸到紅球且第二次也摸到紅球”的概率為P=6×5 10×9 ="1" 3 ,根據(jù)條件概率公式,得,故選D
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在4次獨立重復(fù)試驗中事件A出現(xiàn)的概率相同,若事件A至少發(fā)生1次的概率為,則事件A在1次試驗中出現(xiàn)的概率為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

口袋內(nèi)裝有100個大小相同的紅球、白球和黑球,其中有45個紅球;從中摸出1個球,若摸出白球的概率為0.23,則摸出黑球的概率為____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

隨機變量ξ的概率分布列為P(ξ=n)=a()n(n=0.1.2),其中a為常數(shù),列P(0.1<ξ<2.9)的值為
A..B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某飲料公司招聘了一名員工,現(xiàn)對其進行一項測試,以便確定工資級別.公司準(zhǔn)備了兩種不同的飲料共8杯,其顏色完全相同,并且其中4杯為飲料,另外4杯為飲料.公司要求此員工一一品嘗后,從8杯飲料中選出4杯飲料.若4杯都選對,則月工資定為3500元;若4杯選對3杯,則月工資定為2800元;否則月工資定為2100元.令表示此人選對飲料的杯數(shù).假設(shè)此人對兩種飲料沒有鑒別能力.
(1)求的分布列;
(2)求此員工月工資被定為2100元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列是4個關(guān)于離散型隨機變量ξ的期望和方差的描述
①Eξ與Dξ是一個數(shù)值,它們是ξ本身所固有的特征數(shù),它們不具有隨機性
②若離散型隨機變量一切可能取值位于區(qū)間內(nèi),則a≤Eξ≤b
③離散型隨機變量的期望反映了隨機變量取值的平均水平,而方差反映的是隨機變量取值的穩(wěn)定與波動,集中與離散的程度
④離散型隨機變量的期望值可以是任何實數(shù),而方差的值一定是非負(fù)實數(shù)
以上4個描述正確的個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分13分)甲、乙兩顆衛(wèi)星同時監(jiān)測臺風(fēng),根據(jù)長期經(jīng)驗得知,甲、乙預(yù)報臺風(fēng)準(zhǔn)確的概率分別為0.8和0.75.求:(1) 在同一次預(yù)報中,甲、乙兩衛(wèi)星只有一顆預(yù)報準(zhǔn)確的概率;(2) 若甲獨立預(yù)報4次,至少有3次預(yù)報準(zhǔn)確的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知隨機變量,且,則p和n的值依次為(   )
A.,36B.,18C.,72D.,24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某人射擊一次擊中目標(biāo)的概率為0.6,經(jīng)過3次射擊,設(shè)X表示擊中目標(biāo)的次數(shù),則等于( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案