已知拋物線y2=2px(p>0)的焦點(diǎn)為F,P、Q是拋物線上的兩個點(diǎn),若△PQF是邊長為2的正三角形,則p的值是________.
p=2±
依題意得F,設(shè)P,Q(y1≠y2).由拋物線定義及PF=QF,得,所以,所以y1=-y2.又PQ=2,因此|y1|=|y2|=1,點(diǎn)P.又點(diǎn)P位于該拋物線上,于是由拋物線的定義得PF==2,由此解得p=2±.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線
(1)若圓心在拋物線上的動圓,大小隨位置而變化,但總是與直線相切,求所有的圓都經(jīng)過的定點(diǎn)坐標(biāo);
(2)拋物線的焦點(diǎn)為,若過點(diǎn)的直線與拋物線相交于兩點(diǎn),若,求直線的斜率;
(3)若過正半軸上點(diǎn)的直線與該拋物線交于兩點(diǎn),為拋物線上異于的任意一點(diǎn),記連線的斜率為試求滿足成等差數(shù)列的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓C與兩圓x2+(y+4)2=1,x2+(y-2)2=1外切,圓C的圓心軌跡方程為L,設(shè)L上的點(diǎn)與點(diǎn)M(x,y)的距離的最小值為m,點(diǎn)F(0,1)與點(diǎn)M(x,y)的距離為n.
(1)求圓C的圓心軌跡L的方程.
(2)求滿足條件m=n的點(diǎn)M的軌跡Q的方程.
(3)在(2)的條件下,試探究軌跡Q上是否存在點(diǎn)B(x1,y1),使得過點(diǎn)B的切線與兩坐標(biāo)軸圍成的三角形的面積等于.若存在,請求出點(diǎn)B的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的焦點(diǎn)坐標(biāo)是(     )
A.B.C.(0,1)D.(1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線 (k>0)與拋物線相交于A、B兩點(diǎn),的焦點(diǎn),若,則k的值為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)拋物線y2=8x的準(zhǔn)線與x軸交于點(diǎn)Q,若過點(diǎn)Q的直線l與拋物線有公共點(diǎn),則直線l的斜率的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,拋物線C的頂點(diǎn)在原點(diǎn),經(jīng)過點(diǎn)A(2,2),其焦點(diǎn)F在x軸上.

(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)求過點(diǎn)F,且與直線OA垂直的直線的方程;
(3)設(shè)過點(diǎn)M(m,0)(m>0)的直線交拋物線C于D、E兩點(diǎn),ME=2DM,記D和E兩點(diǎn)間的距離為f(m),求f(m)關(guān)于m的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知F是拋物線的焦點(diǎn),A,B是該拋物線上的兩點(diǎn),,則線段AB的中點(diǎn)到y軸的距離為 ( 。
A.B.1C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線的焦點(diǎn)坐標(biāo)是(0,-3),則拋物線的標(biāo)準(zhǔn)方程是________.

查看答案和解析>>

同步練習(xí)冊答案