已知橢圓=1(a>b>0)的離心率為,且過(guò)點(diǎn)P,A為上頂點(diǎn),F(xiàn)為右焦點(diǎn).點(diǎn)Q(0,t)是線(xiàn)段OA(除端點(diǎn)外)上的一個(gè)動(dòng)點(diǎn),過(guò)Q作平行于x軸的直線(xiàn)交直線(xiàn)AP于點(diǎn)M,以QM為直徑的圓的圓心為N.

(1)求橢圓方程;
(2)若圓N與x軸相切,求圓N的方程;
(3)設(shè)點(diǎn)R為圓N上的動(dòng)點(diǎn),點(diǎn)R到直線(xiàn)PF的最大距離為d,求d的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖;已知橢圓C:的離心率為,以橢圓的左頂點(diǎn)T為圓心作圓T:設(shè)圓T與橢圓C交于點(diǎn)M、N.

(1)求橢圓C的方程;
(2)求的最小值,并求此時(shí)圓T的方程;
(3)設(shè)點(diǎn)P是橢圓C上異于M,N的任意一點(diǎn),且直線(xiàn)MP,NP分別與軸交于點(diǎn)R,S,O為坐標(biāo)原點(diǎn)。求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知定點(diǎn)F(0,1)和直線(xiàn)l1:y=-1,過(guò)定點(diǎn)F與直線(xiàn)l1相切的動(dòng)圓圓心為點(diǎn)C.
(1)求動(dòng)點(diǎn)C的軌跡方程;
(2)過(guò)點(diǎn)F的直線(xiàn)l2交軌跡于兩點(diǎn)P、Q,交直線(xiàn)l1于點(diǎn)R,求·的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知雙曲線(xiàn)過(guò)點(diǎn)(3,-2),且與橢圓4x2+9y2=36有相同的焦點(diǎn).
(1)求雙曲線(xiàn)的標(biāo)準(zhǔn)方程;
(2)求以雙曲線(xiàn)的右準(zhǔn)線(xiàn)為準(zhǔn)線(xiàn)的拋物線(xiàn)的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知曲線(xiàn)C:(5-m)x2+(m-2)y2=8(m∈R).
(1)若曲線(xiàn)C是焦點(diǎn)在x軸上的橢圓,求m的取值范圍;
(2)設(shè)m=4,曲線(xiàn)C與y軸的交點(diǎn)為A,B(點(diǎn)A位于點(diǎn)B的上方),直線(xiàn)y=kx+4與曲線(xiàn)C交于不同的兩點(diǎn)M,N,直線(xiàn)y=1與直線(xiàn)BM交于點(diǎn)G.求證:A,G,N三點(diǎn)共線(xiàn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

是否同時(shí)存在滿(mǎn)足下列條件的雙曲線(xiàn),若存在,求出其方程,若不存在,說(shuō)明理由.
(1)焦點(diǎn)在軸上的雙曲線(xiàn)漸近線(xiàn)方程為;
(2)點(diǎn)到雙曲線(xiàn)上動(dòng)點(diǎn)的距離最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

過(guò)雙曲線(xiàn)的左焦點(diǎn),作傾斜角為的直線(xiàn)交該雙曲線(xiàn)右支于點(diǎn),若,且,則雙曲線(xiàn)的離心率為_(kāi)_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)橢圓+=1(a>b>0)的左,右焦點(diǎn)分別為F1,F2,點(diǎn)P(a,b)滿(mǎn)足|PF2|=|F1F2|.
(1)求橢圓的離心率e;
(2)設(shè)直線(xiàn)PF2與橢圓相交于A,B兩點(diǎn).若直線(xiàn)PF2與圓(x+1)2+(y-)2=16相交于M,N兩點(diǎn),且|MN|=|AB|,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

橢圓=1的焦點(diǎn)為F1、F2,點(diǎn)P為橢圓上的動(dòng)點(diǎn),當(dāng)∠F1PF2為鈍角時(shí),求點(diǎn)P的橫坐標(biāo)x0的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案