分析 (1)設等差數(shù)列{an}的公差為d,由a3=6,a5+a7=24,可得$\left\{\begin{array}{l}{{a}_{1}+2d=6}\\{2{a}_{1}+10d=24}\end{array}\right.$,解得a1,d.利用等差數(shù)列的通項公式與求和公式即可得出.
(2)bn=$\frac{1}{{{a_n}^2-1}}$=$\frac{1}{4{n}^{2}-1}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,利用“裂項求和”方法即可得出.
解答 解:(1)設等差數(shù)列{an}的公差為d,
∵a3=6,a5+a7=24,
∴$\left\{\begin{array}{l}{{a}_{1}+2d=6}\\{2{a}_{1}+10d=24}\end{array}\right.$,
解得a1=d=2.
∴an=2+2(n-1)=2n;
Sn=$\frac{n(2+2n)}{2}$=n2+n.
(2)bn=$\frac{1}{{{a_n}^2-1}}$=$\frac{1}{4{n}^{2}-1}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴數(shù)列{bn}的前n項和Tn=$\frac{1}{2}[(1-\frac{1}{3})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$=$\frac{1}{2}(1-\frac{1}{2n+1})$=$\frac{n}{2n+1}$.
點評 本題考查了等差數(shù)列的通項公式與求和公式、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{10}$ | B. | $\frac{7}{10}$ | C. | $\frac{3}{10}$ | D. | $\frac{11}{30}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{10}}}{2}$ | B. | $\sqrt{13}$ | C. | $\frac{{\sqrt{10}}}{2}$或$\sqrt{13}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -480 | B. | -360 | C. | -240 | D. | -160 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com