【題目】已知函數(shù)是定義在上的奇函數(shù),且偶函數(shù)的定義域?yàn)?/span>,且當(dāng)時(shí), .若存在實(shí)數(shù),使得成立,則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

【答案】D

【解析】,

當(dāng)0≤x≤1時(shí),2x﹣1∈[0,1],

當(dāng)x1時(shí), 01],

即x0時(shí),f(x)的值域?yàn)?/span>[0,1],

f(x)是定義在R上的奇函數(shù),∴x≤0時(shí)f(x)的值域?yàn)?/span>[﹣1,0],

在R上的函數(shù)f(x)的值域?yàn)?/span>[﹣1,1].

定義在{x|x≠0}上的偶函數(shù)g(x),x0的g(x)=log2x,

∴g(x)=log2|x|(x≠0)

存在實(shí)數(shù)a,使得f(a)=g(b)成立,

令﹣1≤g(b)≤1.

即﹣1≤log2|b|≤1.

即有≤|b|≤2,

≤b≤2或﹣2≤b≤

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣cosx,x∈[﹣ , ],則滿足f(x0)>f( )的x0的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:指數(shù)函數(shù)f(x)=(m+1)x是減函數(shù);命題q:x∈R,x2+x+m<0,若“p或q”是真命題,則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線經(jīng)過直線的交點(diǎn).

(1)點(diǎn)到直線的距離為3,求直線的方程;

(2)求點(diǎn)到直線的距離的最大值,并求距離最大時(shí)的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,已知 ,sinB=cosAsinC,SABC=6,P為線段AB上的點(diǎn),且 ,則xy的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某生態(tài)園將一三角形地塊ABC的一角APQ開辟為水果園種植桃樹,已知角A為120°,AB,AC的長(zhǎng)度均大于200米,現(xiàn)在邊界AP,AQ處建圍墻,在PQ處圍竹籬笆.
(1)若圍墻AP,AQ總長(zhǎng)度為200米,如何圍可使得三角形地塊APQ的面積最大?
(2)已知AP段圍墻高1米,AQ段圍墻高1.5米,AP段圍墻造價(jià)為每平方米150元,AQ段圍墻造價(jià)為每平方米100元.若圍圍墻用了30000元,問如何圍可使竹籬笆用料最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=lnx﹣ax,a∈R.
(1)當(dāng)x=1時(shí),函數(shù)f(x)取得極值,求a的值;
(2)當(dāng)0<a< 時(shí),求函數(shù)f(x)在區(qū)間[1,2]上的最大值;
(3)當(dāng)a=﹣1時(shí),關(guān)于x的方程2mf(x)=x2(m>0)有唯一實(shí)數(shù)解,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(α)=
(1)化簡(jiǎn)f(α);
(2)若f(α)= <α<0,求sinαcosα,sinα﹣cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)面AA1C1C底面ABC,AA1=A1C=AC=AB=BC=2,且點(diǎn)O為AC中點(diǎn).
(Ⅰ)證明:A1O⊥平面ABC;
(Ⅱ)求二面角A1﹣AB﹣C的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案