已知a,b為實數(shù),則“2a>2b”是“a2>b2”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既充分也不必要條件
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)不等式的性質(zhì),利用充分條件和必要條件的定義即可得到結(jié)論.
解答: 解:若2a>2b,則a>b,當(dāng)a=1,b=-1時,a2>b2不成立,充分性不成立,
當(dāng)a=-1,b=0時,滿足a2>b2成立,但2a>2b不成立,即必要性不成立,
故“2a>2b”是“a2>b2”的既不充分也不必要條件,
故選:D.
點評:本題主要考查充分條件和必要條件的判定,利用不等式之間的關(guān)系是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-x,若f(x)-m+1≤0恒成立,求m的取值范圍.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在梯形ABCD中,AB∥DC,AD⊥AB,AB=2AD=2DC=4,點N是CD邊上一動點,則
AN
AB
的最大值為( 。
A、4
2
B、8
C、8
2
D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={1,2,4},B={y|y=log2x,x∈A},則A∪B=(  )
A、{0,1,2}
B、{1,2}
C、{0,1,2,4}
D、{0,1,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若l,m為空間兩條不同的直線,α,β為空間兩個不同的平面,則l丄α的一個充分條件是(  )
A、l∥β且α丄β
B、l?β且α丄β
C、l丄β且α∥β
D、l丄m且m∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|sin(2x+
π
3
)|,則下列關(guān)于函數(shù)f(x)的說法中正確的是( 。
A、f(x)圖象關(guān)于直線x=
π
12
對稱
B、f(x)的最小正周期為π
C、f(x)圖象關(guān)于點(-
π
6
,0)對稱
D、f(x)在區(qū)間[
π
3
,
12
]上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x3-3x+1在[-2,1]上的最大值為( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某次中俄軍演中,中方參加演習(xí)的有4艘軍艦、3架飛機(jī);俄方有5艘軍艦、2架飛機(jī).從中俄兩方中各選出2個單位(1艘軍艦或1架飛機(jī)都作為一個單位,所有的軍艦兩兩不同,所有的飛機(jī)兩兩不同),則選出的四個單位中恰有一架飛機(jī)的不同選法共有( 。
A、180種B、160種
C、120種D、38種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在圖的幾何體中,面ABC∥面DEFG,∠BAC=∠EDG=120°,四邊形 ABED 是矩形,四邊形ADGC 是直角梯形,∠ADG=90°,四邊形 DEFG 是梯形,EF∥DG,AB=AC=AD=EF=1,DG=2.
(1)求證:FG⊥面ADF;
(2)求二面角F-GC-D的余弦值.

查看答案和解析>>

同步練習(xí)冊答案