【題目】某火鍋店為了解氣溫對營業(yè)額的影響,隨機(jī)記錄了該店1月份中5天的日營業(yè)額y(單位:千元)與該地當(dāng)日最低氣溫x(單位:℃)的數(shù)據(jù),如下表:
x | 2 | 5 | 8 | 9 | 11 |
y | 12 | 10 | 8 | 8 | 7 |
(1)求y關(guān)于x的回歸方程;
(2)判定y與x之間是正相關(guān)還是負(fù)相關(guān);若該地1月份某天的最低氣溫為6℃,用所求回歸方程預(yù)測該店當(dāng)日的營業(yè)額;
附:①;.
②參考數(shù)據(jù)如下:
i | ||||
1 | 2 | 12 | 4 | 24 |
2 | 5 | 10 | 25 | 50 |
3 | 8 | 8 | 64 | 64 |
4 | 9 | 8 | 81 | 72 |
5 | 11 | 7 | 121 | 77 |
35 | 45 | 295 | 287 |
【答案】(1).(2)負(fù)相關(guān),(千元).
【解析】
(1)根據(jù)回歸系數(shù)的計算公式,求得回歸系數(shù)和,即可得到回歸直線的方程;
(2)根據(jù)回歸系數(shù)的正負(fù),可得y與x之間是負(fù)相關(guān),代入,即可得到該店當(dāng)日的營業(yè)額的預(yù)測值.
(1)由題意,根據(jù)表格中的數(shù)據(jù),
可得,
,
又由,
,
從而,,
故所求回歸方程為.
(2)由,知y與x之間是負(fù)相關(guān),
將代入回歸方程可預(yù)測該店當(dāng)日的營業(yè)額(千元),
即該地1月份某天的最低氣溫為6℃,預(yù)測該店當(dāng)日的營業(yè)額(千元).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地有三家工廠,分別位于矩形ABCD的頂點A,B,及CD的中點P處,已知km,,為了處理三家工廠的污水,現(xiàn)要在矩形ABCD的區(qū)域上(含邊界),且A,B與等距離的一點O處建造一個污水處理廠,并鋪設(shè)排污管道AO,BO,OP,設(shè)排污管道的總長為ykm.
(I)按下列要求寫出函數(shù)關(guān)系式:
①設(shè),將表示成的函數(shù)關(guān)系式;
②設(shè),將表示成的函數(shù)關(guān)系式.
(Ⅱ)請你選用(I)中的一個函數(shù)關(guān)系式,確定污水處理廠的位置,使三條排水管道總長度最短.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓M:(a>b>0)的離心率為,左右頂點分別為A,B,線段AB的長為4.P在橢圓M上且位于第一象限,過點A,B分別作l1⊥PA,l2⊥PB,直線l1,l2交于點C.
(1)若點C的橫坐標(biāo)為﹣1,求P點的坐標(biāo);
(2)直線l1與橢圓M的另一交點為Q,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且過點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若,為橢圓上不同的兩點,且以為直徑的圓過坐標(biāo)原點.是否存在定圓與動直線相切?若存在,求出該圓的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]:在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線,的直角坐標(biāo)方程;
(2)判斷曲線,是否相交,若相交,請求出交點間的距離;若不相交,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,l的極坐標(biāo)方程為,C的參數(shù)方程為(為參數(shù),).寫出l和C的普通方程;
(2)在直角坐標(biāo)系xOy中,曲線的參數(shù)方程為(t為參數(shù)),以原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,記曲線和在第一象限內(nèi)的交點為A.寫出曲線的極坐標(biāo)方程和線段OA的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是邊長為的正方形,為的中點,以為折痕把折起,使點到達(dá)點的位置,且二面角為直二面角,連結(jié).
(1)記平面與平面相較于,在圖中作出,并說明畫法;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新高考改革后,國家只統(tǒng)一考試數(shù)學(xué)和語文,英語學(xué)科改為參加等級考試,每年考兩次,分別放在每個學(xué)年的上、下學(xué)期,物理、化學(xué)、生物、地理、歷史、政治這六科則以該省的省會考成績?yōu)闇?zhǔn).考生從中選擇三科成績,參加大學(xué)相關(guān)院系的錄取.
(1)若英語等級考試成績有一次為優(yōu),即可達(dá)到某211院校的錄取要求.假設(shè)某個學(xué)生參加每次等級考試事件是獨立的,且該生英語等級考試成績?yōu)閮?yōu)的概率都是,求該生在高二上學(xué)期的英語等級考試成績才為優(yōu)的概率;
(2)據(jù)預(yù)測,要想報考該211院校的相關(guān)院系,省會考的成績至少在90分以上,才有可能被該校錄取.假設(shè)該生在省會考六科的成績,考到90分以上概率都是,設(shè)該生在省會考時考到90分以上的科目數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com