【題目】已知,點(diǎn)滿(mǎn)足,記點(diǎn)的軌跡為.斜率為的直線(xiàn)過(guò)點(diǎn),且與軌跡相交于兩點(diǎn).

1)求軌跡的方程;

2)求斜率的取值范圍;

3)在軸上是否存在定點(diǎn),使得無(wú)論直線(xiàn)繞點(diǎn)怎樣轉(zhuǎn)動(dòng),總有成立?如果存在,求出定點(diǎn);如果不存在,請(qǐng)說(shuō)明理由.

【答案】1;(2;(3)存在,.

【解析】

1)根據(jù)雙曲線(xiàn)的定義即可求得方程;

2)聯(lián)立直線(xiàn)與雙曲線(xiàn)方程,轉(zhuǎn)化成方程有解問(wèn)題;

3)假設(shè)存在點(diǎn),聯(lián)立直線(xiàn)和雙曲線(xiàn)整理成二次方程,根據(jù)結(jié)合韋達(dá)定理求解.

1)因?yàn)?/span>,點(diǎn)滿(mǎn)足,

所以點(diǎn)的軌跡為以為焦點(diǎn),實(shí)軸長(zhǎng)為2的雙曲線(xiàn)的右支,

設(shè)其方程,則

所以軌跡的方程:;

2)斜率為的直線(xiàn)過(guò)點(diǎn),直線(xiàn)方程為,代入,

,即有兩個(gè)不等正根,

,

,當(dāng)時(shí),

即不等式組的解:

所以;

3)假設(shè)存在,設(shè)點(diǎn),使

由(2):斜率為的直線(xiàn)過(guò)點(diǎn),直線(xiàn)方程為,代入,

,即有兩個(gè)不等正根,

,所以,

,對(duì)恒成立,

所以,解得,即

當(dāng)直線(xiàn)斜率不存在時(shí),直線(xiàn)方程,此時(shí)

,仍然滿(mǎn)足

所以這樣的點(diǎn)存在,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是雙曲線(xiàn)的兩個(gè)焦點(diǎn),點(diǎn)在雙曲線(xiàn)上,且,則的面積為________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等邊三角形的邊長(zhǎng)為邊的中點(diǎn),沿折成直二面角,則三棱錐的外接球的表面積為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)絡(luò)平臺(tái)從購(gòu)買(mǎi)該平臺(tái)某課程的客戶(hù)中,隨機(jī)抽取了100位客戶(hù)的數(shù)據(jù),并將這100個(gè)數(shù)據(jù)按學(xué)時(shí)數(shù),客戶(hù)性別等進(jìn)行統(tǒng)計(jì),整理得到如表:

學(xué)時(shí)數(shù)

男性

18

12

9

9

6

4

2

女性

2

4

8

2

7

13

4

(1)根據(jù)上表估計(jì)男性客戶(hù)購(gòu)買(mǎi)該課程學(xué)時(shí)數(shù)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表,結(jié)果保留小數(shù)點(diǎn)后兩位);

(2)從這100位客戶(hù)中,對(duì)購(gòu)買(mǎi)該課程學(xué)時(shí)數(shù)在20以下的女性客戶(hù)按照分層抽樣的方式隨機(jī)抽取7人,再?gòu)倪@7人中隨機(jī)抽取2人,求這2人購(gòu)買(mǎi)的學(xué)時(shí)數(shù)都不低于15的概率.

(3)將購(gòu)買(mǎi)該課程達(dá)到25學(xué)時(shí)及以上者視為“十分愛(ài)好該課程者”,25學(xué)時(shí)以下者視,為“非十分愛(ài)好該課程者”.請(qǐng)根據(jù)已知條件完成以下列聯(lián)表,并判斷是否有99.9%的把握認(rèn)為“十分愛(ài)好該課程者”與性別有關(guān)?

非十分愛(ài)好該課程者

十分愛(ài)好該課程者

合計(jì)

男性

女性

合計(jì)

100

附:,

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓上的動(dòng)點(diǎn)到一個(gè)焦點(diǎn)的最遠(yuǎn)距離與最近距離分別是,的左頂點(diǎn)為軸平行的直線(xiàn)與橢圓交于兩點(diǎn),過(guò)、兩點(diǎn)且分別與直線(xiàn)、垂直的直線(xiàn)相交于點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)證明點(diǎn)在一條定直線(xiàn)上運(yùn)動(dòng),并求出該直線(xiàn)的方程;

3)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為了組建一支業(yè)余足球隊(duì),在高一年級(jí)隨機(jī)選取50名男生測(cè)量身高,發(fā)現(xiàn)被測(cè)男生的身高全部在之間,將測(cè)量結(jié)果按如下方式分成六組:第1,第2,第6,如圖是按上述分組得到的頻率分布直方圖,以頻率近似概率.

1)若學(xué)校要從中選1名男生擔(dān)任足球隊(duì)長(zhǎng),求被選取的男生恰好在第5組或第6組的概率;

2)試估計(jì)該校高一年級(jí)全體男生身高的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表)與中位數(shù);

3)現(xiàn)在從第5與第6組男生中選取兩名同學(xué)擔(dān)任守門(mén)員,求選取的兩人中最多有1名男生來(lái)自第5組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年“雙十一”全網(wǎng)銷(xiāo)售額達(dá)億元,相當(dāng)于全國(guó)人均消費(fèi)元,同比增長(zhǎng),監(jiān)測(cè)參與“雙十一”狂歡大促銷(xiāo)的家電商平臺(tái)有天貓、京東、蘇寧易購(gòu)、網(wǎng)易考拉在內(nèi)的綜合性平臺(tái),有拼多多等社交電商平臺(tái),有敦煌網(wǎng)、速賣(mài)通等出口電商平臺(tái).某大學(xué)學(xué)生社團(tuán)在本校名大一學(xué)生中采用男女分層抽樣,分別隨機(jī)調(diào)查了若干個(gè)男生和個(gè)女生的網(wǎng)購(gòu)消費(fèi)情況,制作出男生的頻率分布表、直方圖(部分)和女生的莖葉圖如下:

男生直方圖

分組(百元)

男生人數(shù)

頻率

合計(jì)

女生莖葉圖

(1)請(qǐng)完成頻率分布表的三個(gè)空格,并估計(jì)該校男生網(wǎng)購(gòu)金額的中位數(shù)(單位:元,精確到個(gè)位).

(2)若網(wǎng)購(gòu)為全國(guó)人均消費(fèi)的三倍以上稱(chēng)為“剁手黨”,估計(jì)該校大一學(xué)生中的“剁手黨”人數(shù)為多少?從抽樣數(shù)據(jù)中網(wǎng)購(gòu)不足元的同學(xué)中隨機(jī)抽取人發(fā)放紀(jì)念品,則人都是女生的概率為多少?

(3)用頻率估計(jì)概率,從全市所有高校大一學(xué)生中隨機(jī)調(diào)查人,求其中“剁手黨”人數(shù)的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面為直角梯形,,且,,平面底面,的中點(diǎn),為等邊三角形,是棱上的一點(diǎn),設(shè)不重合).

1)若平面,求的值;

2)當(dāng)時(shí),求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方體中,,點(diǎn)為線(xiàn)段上的動(dòng)點(diǎn),則下列結(jié)論正確的是(

A.當(dāng)時(shí),三點(diǎn)共線(xiàn)

B.當(dāng)時(shí),

C.當(dāng)時(shí),平面

D.當(dāng)時(shí),平面

查看答案和解析>>

同步練習(xí)冊(cè)答案