如圖,在三棱柱ABC-A1B1C1中,向量
AB
,
AC
AA1
兩兩垂直,|
AC
|=1,|
AB
|=2,E,F(xiàn)分別為棱BB1,BC的中點,且
CB1
A1E
=0.
(Ⅰ)求向量
AA1
的模;
(Ⅱ)求直線AA1與平面A1EF所成角的正弦值.
考點:平面向量數(shù)量積的運算,直線與平面所成的角
專題:平面向量及應用
分析:(Ⅰ)分別以AC,AB,AA1為x,y,z軸建立空間直角坐標系,設(shè)A1(0,0,z),得到
CB1
A1E
=4-
z2
2
=0,解出即可.
(Ⅱ)分別求出
AA1
,
A1F
,
A1E
的坐標,設(shè)平面A1EF的法向量
n
=(x,y,z),得到方程組,求出一個
n
,從而求出直線AA1與平面A1EF所成角的正弦值.
解答: 解:(Ⅰ)分別以AC,AB,AA1為x,y,z軸建立空間直角坐標系,
如圖示:

∴C(1,0,0),B(0,2,0),F(xiàn)(1,1,0),
設(shè)A1(0,0,z),則E(0,2,
z
2
),B1(0,2,z),
CB1
=(-1,2,z),
A1E
=(0,2,-
z
2
),
CB1
A1E
=4-
z2
2
=0,解得:z=2
2
,
∴|
AA1
|=2
2
;
(Ⅱ)由(Ⅰ)得:
AA1
=(0,0,2
2
),
A1F
=(1,1,-2
2
),
A1E
=(0,2,-
2
),
設(shè)平面A1EF的法向量
n
=(x,y,z),
x+y-2
2
z=0
2y-
2
z=0
,令z=2,
n
=(3
2
2
,2),
設(shè)直線AA1與平面A1EF所成的角為θ,
∴sinθ=
AA1
n
|
AA1
|•|
n
|
=
4
2
2
2
•2
6
=
6
6
點評:本題考查了平面向量的數(shù)量積的運算及應用,考查了線面角問題,是一道中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=sinx-
3
cosx(x∈[0,2π]),求單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若向量
a
滿足|
a
|=2,且向量
b
與向量
b
-
a
的夾角等
π
6
,則|
b
|的最大值為( 。
A、2
B、4
C、2
3
D、
4
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中∠C=90°,AC=3,BC=4,設(shè)
CA
=
a
,
CB
=
b
,點D在AB邊上,滿足|AD|=
1
3
|AB|,用
a
,
b
表示
CD
,并求|CD|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解方程:lg2x-4lgx+3=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

證明:
(1)cos2α=
1-tan2α
1+tan2α

(2)sin2α=
2tanα
1+tan2a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=({1,
3
),
b
=(3,m),若向量
a
b
的夾角為
π
2
,則實數(shù)m的值為( 。
A、2
3
B、
3
C、0
D、-
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)軸上,兩點之間的距離可以用這兩點中右邊的點所表示的減去左邊的點所表示的數(shù)來計算,例如:數(shù)軸上P,Q兩點表示的數(shù)分別是-1和2,那么P,Q兩點之間的距離就是PQ=2-(-1)=3.已知點A,B,C在同一數(shù)軸上,點M,N分別是線段AC,BC的中點,A,B,C所表示的數(shù)分別是-3,9,x.
(1)求線段AB的長.
(2)若點C在A,B兩點之間,求線段MN的長度.
(3)若線段AC+BC=30,求x值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}是等差數(shù)列,{bn}是各項為正數(shù)的等比數(shù)列,且a1=b1=1,a3+b5=21,a5+b3=13.
(1)求通項公式{an}和{bn};
(2)若cn=
an
bn
,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

同步練習冊答案