如圖在正三棱錐P-ABC中,側(cè)棱長(zhǎng)為3,底面邊長(zhǎng)為2,E為BC的中點(diǎn),
(1)求證:BC⊥PA
(2)求點(diǎn)C到平面PAB的距離
(1)詳見解析;(2)
解析試題分析:(1)解題思路證線面垂直得線線垂直,詳見解析。(2)過點(diǎn)P做面ABC的垂線,垂足為O,因?yàn)槿忮FP-ABC為正三棱錐,則點(diǎn)O為底面三角形的中心。則,在直角三角形POA中求PO,PO即為三棱錐P-ABC的高,可求得三棱錐體積為。又因?yàn)槿切蜳AB各邊長(zhǎng)已知可求其面積,設(shè)出點(diǎn)C到面PAB的距離h,也可表示出三棱錐的體積,根據(jù)體積相等即,可求出h。
試題解析:證明(1)E為BC的中點(diǎn),又為正三棱錐
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f9/b/qcid91.png" style="vertical-align:middle;" />,所以BC⊥PA
(2)設(shè)點(diǎn)C到平面PAB的距離為。
則
10分
12分
考點(diǎn):線線垂直,點(diǎn)到面的距離
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,四邊形ABCD是矩形,平面PCD⊥平面ABCD,M為PC中點(diǎn).求證:
(1)PA∥平面MDB;
(2)PD⊥BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐的底面為矩形,且,,,,
(Ⅰ)平面PAD與平面PAB是否垂直?并說明理由;
(Ⅱ)求直線PC與平面ABCD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐S-ABCD中,SD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=SD=2,E為棱SB上任一點(diǎn).
(Ⅰ)求證:無論E點(diǎn)取在何處恒有;
(Ⅱ)設(shè),當(dāng)平面EDC平面SBC時(shí),求的值;
(Ⅲ)在(Ⅱ)的條件下求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱錐中,,,為的中點(diǎn),為的中點(diǎn),且為正三角形.
(1)求證:平面;
(2)若,,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
三棱錐P?ABC中,PA⊥平面ABC,AB⊥BC。
(1)證明:平面PAB⊥平面PBC;
(2)若PA=,PC與側(cè)面APB所成角的余弦值為,PB與底面ABC成60°角,求二面角B―PC―A的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱錐中,側(cè)面與底面垂直, 分別是的中點(diǎn),,,.
(1)若點(diǎn)在線段上,問:無論在的何處,是否都有?請(qǐng)證明你的結(jié)論;
(2)求二面角的平面角的余弦.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com