3.設(shè)復(fù)數(shù)z=1+i(i是虛數(shù)單位),則|${\frac{2}{z}$+z|=( 。
A.2B.$\sqrt{5}$C.3D.2$\sqrt{2}$

分析 先求出${\frac{2}{z}$+z,再求出其模即可.

解答 解:∵z=1+i,
∴${\frac{2}{z}$+z=$\frac{2}{1+i}$+1+i=$\frac{2(1-i)}{(1+i)(1-i)}$=$\frac{2(1-i)}{2}$=1-i+1+i=2,
故|${\frac{2}{z}$+z|=2,
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的化簡(jiǎn)運(yùn)算,考查復(fù)數(shù)求模問題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.△ABC中,A(-4,0),B(4,0),且sinA-sinB=$\frac{1}{2}$sinC,則頂點(diǎn)C的軌跡方程是(  )
A.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1(x>2)B.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1(x<-2)
C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x>2)D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x<-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=(m2-m-1)${x}^{{m}^{2}+m-3}$是冪函數(shù),對(duì)任意的x1、x2∈(0,+∞),且x1≠x2,滿足$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,若a、b∈R,且a+b>0,ab<0,則f(a)+f(b)的值( 。
A.恒小于0B.恒大于0C.等于0D.無法判斷

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖所示,AB是圓O的直徑,延長(zhǎng)BA至C,使AC=$\frac{1}{3}$BC,過C作圓O的切割線交圓O于M、N兩點(diǎn),且AM=MN.
(1)證明:∠AOM=∠ABN;
(2)若MN=2,求AN的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=ln(n+1)-a.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=e${\;}^{{a}_{n}}$(e為自然對(duì)數(shù)的底數(shù)),定義:$\underset{\stackrel{n}{π}}{k=1}$bk=b1•b2•b3•…•bn,求$\underset{\stackrel{n}{π}}{k=1}$bk

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.?dāng)?shù)據(jù)2x1+1,2x2+1,…,2xn+1的方差是4,則數(shù)據(jù)x1,x2,…,xn的方差為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知復(fù)數(shù)z滿足z+i-3=3-i,則z等于( 。
A.0B.2iC.6D.6-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.三角形的三個(gè)頂點(diǎn)是A(4,0),B(6,7),C(0,3).
(1)求AB邊上的中線所在直線的方程;
(2)求BC邊的垂直平分線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.過點(diǎn)P(1,3$\sqrt{3}$)作直線l交x軸正半軸于點(diǎn)A,交y軸正半軸于點(diǎn)B,則AB長(zhǎng)度的最小值為8.

查看答案和解析>>

同步練習(xí)冊(cè)答案