已知p:關(guān)于x的方程x2+mx+1=0有兩個(gè)不相等的負(fù)數(shù)根q:關(guān)于x的方程4x2+4(m-2)x+1=0無(wú)實(shí)根;如果復(fù)合命題“p或q”為真,“p且q”為假,求m的取值范圍.
分析:先求出兩個(gè)命題參數(shù)所滿足的范圍,再根據(jù)“p或q”為真,p且q”為假判斷出兩命題的真假情況,然后求出實(shí)數(shù)m的取值范圍.
解答:解:當(dāng)P為真時(shí),有
△>0
x1+x2<0
x1•x2>0

即 m2>0且-m<0,解得m>2(4分)
當(dāng)q為真時(shí),有△=16(m-2)2-16<0得,1<m<3  (6分)
由題意:“P或Q”真,“P且Q”為假等價(jià)于
(1)P真q假:
m>2
m≤1或m≥3
得m≥3     (8分)
(2)q真P假:
m≤2
1<m<3
,得 1<m≤2(11分)
綜合(1)(2)m的取值范圍是{m|1<m≤2或m≥3}。12分)
點(diǎn)評(píng):本題考查命題的真假判斷與應(yīng)用,解題的關(guān)鍵是對(duì)兩個(gè)命題時(shí)行化簡(jiǎn),以及正確理解“p或q”為真,p且q”為假的意義.本題易因?yàn)閷?duì)此關(guān)系判斷不準(zhǔn)出錯(cuò).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p:關(guān)于x的方程2x+m-1=0有實(shí)數(shù)解;q:函數(shù)f(x)=|x-m|+1在(-∞,2)上為減函數(shù).若p或q為真,p且q為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p:關(guān)于x的方程x2+2x+m-1=0沒(méi)有實(shí)根,q:不等式4x2+4(m-2)x+1>0的解集為R,
(1)若¬q為假命題,求m的取值范圍;
(2)若p∨q為真命題,p∧q為假命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p:關(guān)于x的方程4x2+4(m-2)x+1=0無(wú)實(shí)根,q:關(guān)于x的方程x2+mx+1=0的兩實(shí)根都小于1,若p∧q是真命題,且¬(p∨q)是假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•聊城一模)已知p:關(guān)于x的方程ax2+2x+1=0至少有一個(gè)負(fù)實(shí)根,q:a≤1,則q是p的(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案