18.方程(a+1)x-y-2a+1=0(a∈R)所表示的直線恒過定點(2,3).

分析 把直線的方程分離參數(shù),令參數(shù)的系數(shù)等于0,求得x、y的值,可得此直線經(jīng)過的定點的坐標(biāo).

解答 解:直線(a+1)x-y-2a+1=0,即 a(x-2)+(x-y+1)=0,
令x-2=0,求得x=2,y=3,可得此直線經(jīng)過定點(2,3).
故答案為:(2,3).

點評 本題考查直線系方程,本題通過恒過定點問題來考查學(xué)生方程轉(zhuǎn)化的能力及直線系的理解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知全集U=R,集合A={x|1≤x<4},B={x|3x-1<x+5},C={x|x>a}.
(1)求A∩B;
(2)若B∩C=∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知A為△ABC的內(nèi)角,在log2cosA有意義的條件下,事件“l(fā)og2cosA<-1”發(fā)生的概率為( 。
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C的兩焦點分別為F1(-2$\sqrt{2}$,0)、F2(2$\sqrt{2}$,0),長軸長為6,
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若PF2⊥x軸,求點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.定義運算:x•y=$\left\{\begin{array}{l}x,x≤y\\ y,x>y\end{array}$,若|m+1|•|m|=|m+1|,則實數(shù)m的取值范圍是m$≤-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若x,2x+1,4x+5是等比數(shù)列{an}的前三項,則an=3n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列有關(guān)命題的說法正確的是( 。
A.“若x>1,則2x>1”的否命題為真命題
B.“若cosβ=1,則sinβ=0”的逆命題是真命題
C.“若空間向量$\overrightarrow{a}$,$\overrightarrow$共線,則$\overrightarrow{a}$,$\overrightarrow$方向相同”的逆否命題為假命題
D.命題“若x>1,則x>a”的逆命題為真命題,則a>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=ax|logax|-1有兩個不同的零點,則實數(shù)a的取值范圍是(  )
A.(1,10)B.(1,+∞)C.(0,1)D.(10,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.對于正整數(shù)m,n,p,q,若數(shù)列{an}為等差數(shù)列,則m+n=p+q是am+an=ap+aq的(  )
A.必要不充分條件B.充分不必要條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案