【題目】已知函數(shù)f(x)= [cos(2x+ )+4sinxcosx]+1,x∈R.
(1)求函數(shù)f(x)的最小正周期;
(2)令g(x)=af(x)+b,若函數(shù)g(x)在區(qū)間[﹣ , ]上的值域?yàn)閇﹣1.1],求a+b的值.

【答案】
(1)解:∵f(x)= [cos(2x+ )+4sinxcosx]+1

= [ cos2x﹣ sin2x+2sin2x]+1

= sin2x+ cos2x+1

=sin(2x+ )+1,

∴T=


(2)解:∵x∈[﹣ ],

∴2x+ ∈[﹣ , ],可得:sin(2x+ )∈[﹣ ,1],

∴函數(shù)f(x)在區(qū)間[﹣ ]上的值域?yàn)閇 ,2],

∵g(x)=af(x)+b,

∴①當(dāng)a>0時(shí), ,解得 ,

∴a+b=﹣ ,

②當(dāng)a<0時(shí), ,解得

∴a+b=


【解析】1、利用余弦函數(shù)的兩角和差公式和正弦函數(shù)的二倍角公式整理式子可得f(x)=sin(2x+ )+1,可得T=π。
2、利用整體思想求得函數(shù)f(x)在區(qū)間[﹣ , ]上的值域?yàn)閇 ,2],再根據(jù)g(x)=af(x)+b的增減性,分情況討論可求得a+b的值。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程4x﹣m2x+1+4=0有實(shí)數(shù)根,則m的取值范圍( )
A.(1,+∞)
B.[1,+∞)
C.(2,+∞)
D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求適合下列條件的橢圓的標(biāo)準(zhǔn)方程:
(1)兩個(gè)焦點(diǎn)的坐標(biāo)分別是 , ,橢圓上一點(diǎn) 到兩焦點(diǎn)的距離之和為 ;
(2)焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過 兩點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)f(x)= cos(2x+ )﹣1的圖象向左平移 個(gè)單位長度,再向上平移1個(gè)單位長度,得到函數(shù)g(x)的圖象,則函數(shù)g(x)具有性質(zhì) . (填入所有正確性質(zhì)的序號(hào))
①最大值為 ,圖象關(guān)于直線x=﹣ 對稱;
②圖象關(guān)于y軸對稱;
③最小正周期為π;
④圖象關(guān)于點(diǎn)( ,0)對稱;
⑤在(0, )上單調(diào)遞減.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|< )的圖象如圖所示.

(1)試確定該函數(shù)的解析式;
(2)該函數(shù)的圖角可由y=sinx(x∈R)的圖象經(jīng)過怎樣的平移和伸縮變換得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=2an﹣3n(n∈N+).
(1)求a1 , a2 , a3的值;
(2)是否存在常數(shù)λ,使得{an+λ}為等比數(shù)列?若存在,求出λ的值和通項(xiàng)公式an , 若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知結(jié)論:“在三邊長都相等的△ABC中,若D是BC的中點(diǎn),G是△ABC外接圓的圓心,則 ”.若把該結(jié)論推廣到空間,則有結(jié)論:“在六條棱長都相等的四面體ABCD中,若M是△BCD的三邊中線的交點(diǎn),O為四面體ABCD外接球的球心,則 =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓 ,直線 .

(1)求直線 所過定點(diǎn) 的坐標(biāo);
(2)求直線 被圓 所截得的弦長最短時(shí) 的值及最短弦長.
(3)已知點(diǎn) ,在直線 上( 為圓心),存在定點(diǎn) (異于點(diǎn) ),滿足:對于圓 上任一點(diǎn) ,都有 為一常數(shù),試求所有滿足條件的點(diǎn) 的坐標(biāo)及該常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐 中,側(cè)面 底面 ,側(cè)棱 ,底面 為直角梯形,其中 中點(diǎn).

(1)求證: 平面 ;
(2)求異面直線 所成角的余弦值;
(3)線段 上是否存在 ,使得它到平面 的距離為 ?若存在,求出 的值.

查看答案和解析>>

同步練習(xí)冊答案