1.復(fù)數(shù)$\frac{1}{1+ai}$(a∈R)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第一象限,則a的取值范圍是( 。
A.a<0B.0<a<1C.a>1D.a<-1

分析 利用復(fù)數(shù)的運(yùn)算法則、幾何意義即可得出.

解答 解:復(fù)數(shù)z=$\frac{1}{1+ai}$=$\frac{1-ai}{1+{a}^{2}}$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第一象限,
∴-a>0,解得a<0.
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an+1=3Sn+1,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=n+an,求Tn=b1+b2+…+bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=x3-x2-x,
(1)曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程
(2)求函數(shù)y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知一個(gè)簡(jiǎn)單幾何的三視圖如圖所示,若該幾何體的體積為24π+48,則該幾何體的表面積為(  )
A.24π+48B.$24π+90+6\sqrt{41}$C.48π+48D.$24π+66+6\sqrt{41}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若復(fù)數(shù)z滿(mǎn)足i(z+1)=-3+2i,則z的虛部是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)Sn為正項(xiàng)數(shù)列{an}的前n項(xiàng)和,a2=3,Sn+1(2Sn+1+n-4Sn)=2nSn,則a25等于( 。
A.3×223B.3×224C.223D.224

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知復(fù)數(shù)z1=2-i,z2=1+i,其中i為虛數(shù)單位,設(shè)復(fù)數(shù)z=$\frac{{z}_{1}}{{z}_{2}}$,若a-z為純虛數(shù),則實(shí)數(shù)a的值為(  )
A.$\frac{3}{2}$B.$\frac{1}{2}$C.-$\frac{3}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)A、B、C為銳角△ABC的三個(gè)內(nèi)角,M=sinA+sinB+sinC,N=cosA+2cosB,則( 。
A.M<NB.M=NC.M>ND.M、N大小不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知實(shí)數(shù)x,y滿(mǎn)足$\left\{\begin{array}{l}{x-2y+1≥0}\\{x≤2}\\{x+y-1≥0}\end{array}\right.$,則2x-2y+1的最大值是7.

查看答案和解析>>

同步練習(xí)冊(cè)答案