【題目】已知y=f(x)是二次函數(shù),方程f(x)=0有兩相等實(shí)根,且f′(x)=2x+2
(1)求f(x)的解析式.
(2)求函數(shù)y=f(x)與y=﹣x2﹣4x+1所圍成的圖形的面積.

【答案】
(1)解:∵y=f(x)是二次函數(shù),且f'(x)=2x+2.∴可設(shè)f(x)=x2+2x+c.

又∵方程f(x)=0有兩個(gè)相等實(shí)根,

∴△=4﹣4c=0c=1,

∴f(x)=x2+2x+1


(2)解:∵函數(shù)f(x)=x2+2x+1與函數(shù)y=﹣x2﹣4x+1的圖象交于點(diǎn)(0,1),(﹣3,4),

∴兩函數(shù)圖象所圍成的圖形的面積為 =


【解析】(1)用待定系數(shù)法設(shè)出解析式,據(jù)△=0,和f′(x)=2x+2確定結(jié)果.(2)利用定積分求曲邊圖形面積,找準(zhǔn)積分區(qū)間和被積函數(shù).
【考點(diǎn)精析】根據(jù)題目的已知條件,利用定積分的概念的相關(guān)知識(shí)可以得到問題的答案,需要掌握定積分的值是一個(gè)常數(shù),可正、可負(fù)、可為零;用定義求定積分的四個(gè)基本步驟:①分割;②近似代替;③求和;④取極限.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,關(guān)于正方體ABCD﹣A1B1C1D1 , 下面結(jié)論錯(cuò)誤的是(
A.BD⊥平面ACC1A1
B.AC⊥BD
C.A1B∥平面CDD1C1
D.該正方體的外接球和內(nèi)接球的半徑之比為2:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在(﹣∞,0)∪(0,+∞)上的函數(shù)f(x),總有f(mn)=f(m)f(n),且f(x)>0,當(dāng)x>1時(shí),f(x)>1.
(1)求f(1),f(﹣1)的值;
(2)判斷函數(shù)的奇偶性,并證明;
(3)判斷函數(shù)在(0,+∞)上的單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sinxcosx+sin2x﹣
(1)求f(x)的最小正周期及其對(duì)稱軸方程;
(2)設(shè)函數(shù)g(x)=f( + ),其中常數(shù)ω>0,|φ|< . (i)當(dāng)ω=4,φ= 時(shí),函數(shù)y=g(x)﹣4λf(x)在[ , ]上的最大值為 ,求λ的值;
(ii)若函數(shù)g(x)的一個(gè)單調(diào)減區(qū)間內(nèi)有一個(gè)零點(diǎn)﹣ ,且其圖象過點(diǎn)A( ,1),記函數(shù)g(x)的最小正周期為T,試求T取最大值時(shí)函數(shù)g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在古希臘畢達(dá)哥拉斯學(xué)派把1,3,6,10,15,21,28,…這些數(shù)叫做三角形數(shù),因?yàn)檫@些數(shù)對(duì)應(yīng)的點(diǎn)可以排成一個(gè)正三角形則第n個(gè)三角形數(shù)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax﹣1(a>0,且a≠1),當(dāng)x∈(0,+∞)時(shí),f(x)>0,且函數(shù)g(x)=f(x+1)﹣4的圖象不過第二象限,則a的取值范圍是( )
A.(1,+∞)
B.
C.(1,3]
D.(1,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在幾何體中,四邊形為菱形,對(duì)角線的交點(diǎn)為,四邊形為梯形, .

(Ⅰ)若,求證: 平面

(Ⅱ)求證:平面平面;

(Ⅲ)若 , ,求與平面所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù) 圖象的兩條相鄰的對(duì)稱軸之間的距離為 ,且該函數(shù)圖象關(guān)于點(diǎn)(x0 , 0)成中心對(duì)稱, ,則x0=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x2﹣3x+1, ,(A≠0)
(1)當(dāng)0≤x≤ 時(shí),求y=f(sinx)的最大值;
(2)若對(duì)任意的x1∈[0,3],總存在x2∈[0,3],使f(x1)=g(x2)成立,求實(shí)數(shù)A的取值范圍;
(3)問a取何值時(shí),方程f(sinx)=a﹣sinx在[0,2π)上有兩解?

查看答案和解析>>

同步練習(xí)冊(cè)答案