【題目】下列各組函數(shù)中,表示同一函數(shù)的是( )
A.f(x)= ,g(x)=( )2
B.f(x)=(x﹣1)0 , g(x)=1
C.f(x) ,g(x)=x+1
D.f(x)= ,g(t)=|t|
【答案】D
【解析】解:f(x)= ,g(x)=( )2 , 函數(shù)的定義域不相同,不是相同函數(shù); f(x)=(x﹣1)0 , g(x)=1,函數(shù)的定義域不相同,不是相同函數(shù);
f(x) ,g(x)=x+1,函數(shù)的定義域不相同,不是相同函數(shù);
f(x)= ,g(t)=|t|,函數(shù)的定義域相同,對應(yīng)法則相同,是相同函數(shù).
故選:D.
【考點(diǎn)精析】通過靈活運(yùn)用判斷兩個(gè)函數(shù)是否為同一函數(shù),掌握只有定義域和對應(yīng)法則二者完全相同的函數(shù)才是同一函數(shù)即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩種不同規(guī)格的產(chǎn)品,其質(zhì)量按測試指標(biāo)分?jǐn)?shù)進(jìn)行劃分,其中分?jǐn)?shù)不小于82分的為合格品,否則為次品.現(xiàn)隨機(jī)抽取兩種產(chǎn)品各100件進(jìn)行檢測,其結(jié)果如下:
測試指標(biāo)分?jǐn)?shù) | |||||
甲產(chǎn)品 | 8 | 12 | 40 | 32 | 8 |
乙產(chǎn)品 | 7 | 18 | 40 | 29 | 6 |
(1)根據(jù)以上數(shù)據(jù),完成下面的 列聯(lián)表,并判斷是否有 的有把握認(rèn)為兩種產(chǎn)品的質(zhì)量有明顯差異?
甲產(chǎn)品 | 乙產(chǎn)品 | 合計(jì) | |
合格品 | |||
次品 | |||
合計(jì) |
(2)已知生產(chǎn)1件甲產(chǎn)品,若為合格品,則可盈利40元,若為次品,則虧損5元;生產(chǎn)1件乙產(chǎn)品,若為合格品,則可盈利50元,若為次品,則虧損10元.記 為生產(chǎn)1件甲產(chǎn)品和1件乙產(chǎn)品所得的總利潤,求隨機(jī)變量的分布列和數(shù)學(xué)期望(將產(chǎn)品的合格率作為抽檢一件這種產(chǎn)品為合格品的概率).
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.702 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位共有10名員工,他們某年的收入如下表:
員工編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
年薪(萬元) | 4 | 4.5 | 6 | 5 | 6.5 | 7.5 | 8 | 8.5 | 9 | 51 |
(1)求該單位員工當(dāng)年年薪的平均值和中位數(shù);
(2)從該單位中任取2人,此2人中年薪收入高于7萬的人數(shù)記為,求的分布列和期望;
(3)已知員工年薪收入與工作年限成正相關(guān)關(guān)系,某員工工作第一年至第四年的年薪分別為4萬元,5.5萬元,6萬元,8.5萬元,預(yù)測該員工第五年的年薪為多少?
附:線性回歸方程中系數(shù)計(jì)算公式分別為:
, ,其中為樣本均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),記的極大值為,極小值為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線平行于軸.
(1)求的單調(diào)區(qū)間;
(2)證明:當(dāng)時(shí), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,網(wǎng)格紙上小正方形的邊長為,粗實(shí)線畫出的是某幾何體的三視圖,該幾何體由一平面將一圓柱截去一部分所得,則該幾何體的體積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U=R,集合A={x|2x+a>0},B={x|x2﹣2x﹣3>0}. (Ⅰ)當(dāng)a=2時(shí),求集合A∩B;
(Ⅱ)若A∩(UB)=,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】格紙中每個(gè)正方形的邊長為1,粗線部分是一個(gè)幾何體的三視圖,則該幾何體最長棱的棱長是
A. 3 B. 6 C. D. 5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ) 當(dāng)a=-1時(shí),求證: ;
(Ⅱ) 對任意,存在,使成立,求a的取值范圍.(其中e是自然對數(shù)的底數(shù),e=2.71828…)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com