【題目】如圖所示,在三棱錐中,側(cè)面, 是全等的直角三角形, 是公共的斜邊且, ,另一側(cè)面是正三角形.
(1)求證: ;
(2)若在線段上存在一點(diǎn),使與平面成角,試求二面角的大小.
【答案】(1)見解析(2)
【解析】試題分析:
(1)利用題意將幾何體補(bǔ)形,然后建立空間直角坐標(biāo)系即可證得.
(2)利用空間坐標(biāo)系結(jié)合平面的法向量可得二面角的大小為.
試題解析:
解:(1)證明:作面于,連接,由題意得, ,故中, ,所以為直角三角形, ,又為在平面內(nèi)的射影, ,同理得,又,所以四邊形是正方形且,將所得四棱錐補(bǔ)成正方體,建立如圖所示的空間直角坐標(biāo)系,則, , , , , ,所以,則.
(2)設(shè)是線段上上一點(diǎn),則, ,平面的一個(gè)法向量為, ,要使與平面成角,由圖可知, 與的夾角為,所以 ,則,解得,則,故線段上存在點(diǎn),當(dāng)時(shí), 與平面成角.
, , , , , ,設(shè)平面的法向量,
則, ,令則,
,同理平面的法向量,
,設(shè)平面與平面成角為,
則, .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A={x|﹣1<x<2},B={x|log2x>0}.
(1)求A∩B和A∪B;
(2)定義A﹣B={x|x∈A且xB},求A﹣B和B﹣A.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若是函數(shù)是極值點(diǎn),1是函數(shù)零點(diǎn),求實(shí)數(shù),的值和函數(shù)的單調(diào)區(qū)間;
(Ⅱ) 若對(duì)任意,都存在(為自然對(duì)數(shù)的底數(shù)),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)【選修4-5:不等式選講】
已知函數(shù).
(Ⅰ)求的解集;
(Ⅱ)設(shè)函數(shù), ,若對(duì)任意的都成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù) f(x)= 在[﹣2,3]上的最大值為2,則實(shí)數(shù)a的取值范圍是( )
A.[ ln2,+∞ )
B.[0, ln2]
C.(﹣∞,0]
D.(﹣∞, ln2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠有4臺(tái)大型機(jī)器,在一個(gè)月中,一臺(tái)機(jī)器至多出現(xiàn)1次故障,且每臺(tái)機(jī)器是否出現(xiàn)故障是相互獨(dú)立的,出現(xiàn)故障時(shí)需1名工人進(jìn)行維修,每臺(tái)機(jī)器出現(xiàn)故障需要維修的概率為.
(1)若出現(xiàn)故障的機(jī)器臺(tái)數(shù)為,求的分布列;
(2) 該廠至少有多少名工人才能保證每臺(tái)機(jī)器在任何時(shí)刻同時(shí)出現(xiàn)故障時(shí)能及時(shí)進(jìn)行維修的概率不少于90%?
(3)已知一名工人每月只有維修1臺(tái)機(jī)器的能力,每月需支付給每位工人1萬元的工資,每臺(tái)機(jī)器不出現(xiàn)故障或出現(xiàn)故障能及時(shí)維修,就使該廠產(chǎn)生5萬元的利潤,否則將不產(chǎn)生利潤,若該廠現(xiàn)有2名工人,求該廠每月獲利的均值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com