已知各項(xiàng)均為正數(shù)的數(shù)列滿(mǎn)足,, .
(Ⅰ)求證:數(shù)列是等比數(shù)列; 
(Ⅱ)當(dāng)取何值時(shí),取最大值,并求出最大值;
(Ⅲ)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
(I)見(jiàn)解析
(II)當(dāng)n=7或n=8時(shí),取最大值,最大值為
(III)實(shí)數(shù)的取值范圍是
(I)∵,
. 即
,所以

是以為首項(xiàng),公比為的等比數(shù)列.
(II)由(I)可知 ().


當(dāng)n=7時(shí),;
當(dāng)n<7時(shí),,;
當(dāng)n>7時(shí),,

當(dāng)n=7或n=8時(shí),取最大值,最大值為
(III)由,得      (*)
依題意(*)式對(duì)任意恒成立,
當(dāng)t=0時(shí),(*)式顯然不成立,因此t=0不合題意.
②當(dāng)t<0時(shí),由,可知).
而當(dāng)m是偶數(shù)時(shí),因此t<0不合題意.
③當(dāng)t>0時(shí),由),
   ∴. (
設(shè)    (
 =,
.∴的最大值為
所以實(shí)數(shù)的取值范圍是
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
數(shù)列
(Ⅰ)求并求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)證明:當(dāng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分,(Ⅰ)問(wèn)5分,(Ⅱ)問(wèn)7分)
設(shè)個(gè)不全相等的正數(shù)依次圍成一個(gè)圓圈。
(Ⅰ)若,且是公差為的等差數(shù)列,而是公比為的等比數(shù)列;數(shù)列的前項(xiàng)和滿(mǎn)足:,求通項(xiàng);
(Ⅱ)若每個(gè)數(shù)是其左右相鄰兩數(shù)平方的等比中項(xiàng),求證:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列滿(mǎn)足, ,則此數(shù)列的通項(xiàng)等于
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知遞增的等比數(shù)列的前三項(xiàng)之積為512,且這三項(xiàng)分別減去1,3,9后又成等差數(shù)列,求數(shù)列的通項(xiàng)公式,并求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某地區(qū)發(fā)生流行性病毒感染,居住在該地區(qū)的居民必須服用一種藥物預(yù)防,規(guī)定每人每天早晚八時(shí)各服一片,現(xiàn)知該藥片每片含藥量為220毫克,若人的腎臟每12小時(shí)從體內(nèi)濾出這種藥的60%,在體內(nèi)的殘留量超過(guò)386毫克,就將產(chǎn)生副作用.
(1) 某人上午八時(shí)第一次服藥,問(wèn)到第二天上午八時(shí)服完藥時(shí),這種藥在他體內(nèi)還殘留多少?(2) 長(zhǎng)期服用的人這種藥會(huì)不會(huì)產(chǎn)生副作用?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)等差數(shù)列的最大值為      。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)數(shù)列滿(mǎn)足=1+,且,則
+的值為 (      )
A.100B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

有四個(gè)數(shù),其中前三個(gè)數(shù)成等差數(shù)列,后三個(gè)數(shù)成等比數(shù)列,且第一個(gè)數(shù)與第四個(gè)數(shù)之和為16,第二個(gè)數(shù)與第三個(gè)數(shù)之和為12,求這四個(gè)數(shù)。

查看答案和解析>>

同步練習(xí)冊(cè)答案