已知圓O:x2+y2=r2(r>0)和直線l:y=kx+1.
(1)若k=1時(shí),圓O與直線l相交,求r的取值范圍;
(2)若r=2時(shí),當(dāng)直線l截圓O的弦長(zhǎng)為
14
,求k的值.
分析:由圓O的方程找出圓心坐標(biāo)和半徑,
(1)將k的值代入直線l方程,確定出直線l,由圓O與直線l相交,得到圓心到直線l的距離小于圓的半徑,利用點(diǎn)到直線的距離公式列出關(guān)于r的不等式,求出不等式的解集即可得到r的范圍;
(2)利用點(diǎn)到直線的距離公式表示出圓心到直線l的距離d,再由r及弦長(zhǎng),利用垂徑定理及勾股定理列出關(guān)于k的方程,求出方程的解即可得到k的值.
解答:解:由圓O方程x2+y2=r2(r>0),得到圓心(0,0),半徑為r,
(1)當(dāng)k=1時(shí),直線l方程為y=x+1,
由圓O與直線l相交,得到圓心到直線的距離d<r,
1
2
<r,即r>
2
2

則圓O與直線l相交時(shí),r的范圍為(
2
2
,+∞);
(2)∵圓心到直線l的距離d=
1
k2+1
,且r=2,直線l被圓截得的弦長(zhǎng)為
14
,
14
=2
r2-d2
,即
14
=2
4-
1
k2+1
,
整理得:k2=3,
解得:k=
3
或k=-
3
,
則k的值為
3
或-
3
點(diǎn)評(píng):此題考查了直線與圓的位置關(guān)系,涉及的知識(shí)有:圓的標(biāo)準(zhǔn)方程,點(diǎn)到直線的距離公式,垂徑定理,以及勾股定理,當(dāng)直線與圓相交時(shí),圓心到直線的距離小于圓的半徑,此時(shí)常常根據(jù)垂徑定理由垂直得中點(diǎn),進(jìn)而由弦長(zhǎng)的一半,圓的半徑及弦心距構(gòu)造直角三角形,利用勾股定理來(lái)解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知圓O:x2+y2=2交x軸于A,B兩點(diǎn),曲線C是以AB為長(zhǎng)軸,離心率為
2
2
的橢圓,其左焦點(diǎn)為F.若P是圓O上一點(diǎn),連接PF,過(guò)原點(diǎn)O作直線PF的垂線交橢圓C的左準(zhǔn)線于點(diǎn)Q.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)P的坐標(biāo)為(1,1),求證:直線PQ與圓O相切;
(3)試探究:當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí)(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請(qǐng)證明;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知圓o:x2+y2=b2與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
有一個(gè)公共點(diǎn)A(0,1),F(xiàn)為橢圓的左焦點(diǎn),直線AF被圓所截得的弦長(zhǎng)為1.
(1)求橢圓方程.
(2)圓o與x軸的兩個(gè)交點(diǎn)為C、D,B( x0,y0)是橢圓上異于點(diǎn)A的一個(gè)動(dòng)點(diǎn),在線段CD上是否存在點(diǎn)T(t,0),使|BT|=|AT|,若存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓O:x2+y2=9,定點(diǎn) A(6,0),直線l:3x-4y-25=0
(1)若P為圓O上動(dòng)點(diǎn),求線段PA的中點(diǎn)M的軌跡方程
(2)設(shè)E、F分別是圓O和直線l上任意一點(diǎn),求線段EF的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣州一模)已知圓O:x2+y2=r2,點(diǎn)P(a,b)(ab≠0)是圓O內(nèi)一點(diǎn),過(guò)點(diǎn)P的圓O的最短弦所在的直線為l1,直線l2的方程為ax+by+r2=0,那么( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓O:x2+y2=1,點(diǎn)P在直線x=
3
上,O為坐標(biāo)原點(diǎn),若圓O上存在點(diǎn)Q,使∠OPQ=30°,則點(diǎn)P的縱坐標(biāo)y0的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案