【題目】已知橢圓:().下面表格所確定的點中,恰有三個點在橢圓上.
1 | ||||
0 |
(1)求橢圓的方程;
(2)已知為坐標原點,點,分別為的上下頂點,直線經(jīng)過的右頂點,且與的另一個公共點為,直線,相交于點,若與軸的交點異于,,證明為定值.
【答案】(1);(2)詳見解析.
【解析】
(1)點和點關(guān)于原點對稱,此兩點必在橢圓上,故有,將剩余兩個點的坐標代入橢圓方程可得關(guān)于a與b的方程,與上式聯(lián)立通過判斷解的情況即可判斷出那個點在橢圓上,進而求出方程;
(2)設(shè)直線l的方程為:,由題易得 ,聯(lián)立直線l與橢圓E的方程得:,由韋達定理得到和的表達式,
設(shè)點,直線AC的方程為:,直線BD的方程為:,
聯(lián)立直線AC的方程和直線BD的方程得到點N的坐標,進而求出向量,
而,即可證明為定值.
(1)點和點關(guān)于原點對稱,此兩點必在橢圓上,
故有①,
將點代入中得,,解得:,
再將代入①中得:,解得:;
再將點代入中得,②,聯(lián)立①②得:,顯然無解;
綜上,,,所以橢圓的方程為:;
(2)由題意作圖如下:
設(shè)直線l的方程為:,由條件知:,點,點,點,
則點,向量,
設(shè)點,
聯(lián)立直線l與橢圓E的方程,消去y得:,
所以,
直線AC的方程為:③,
直線BD的方程為:④,
設(shè)點,由③④,得:,
又點在直線l上,所以:
,
則向量,
所以,
故為定值.
科目:高中數(shù)學 來源: 題型:
【題目】某次測驗,將20名學生平均分為兩組,測驗結(jié)果兩組學生成績的平均分和標準差分別為90,6;80,4.則這20名學生成績的方差為_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,將長方形OAA1O1(及其內(nèi)部)繞OO1旋轉(zhuǎn)一周形成圓柱,其中,弧的長為,AB為⊙O的直徑.
(1)在弧上是否存在點(,在平面的同側(cè)),使,若存在,確定其位置,若不存在,說明理由.
(2)求二面角的余弦值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和,數(shù)列滿足.
(1)證明:是等比數(shù)列,并求;
(2)若數(shù)列中去掉與數(shù)列中相同的項后,余下的項按原順序排列成數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術(shù)》是我國古代數(shù)學成就的杰出代表作,其中《方田》章給出計算弧田面積所用的經(jīng)驗方式為:弧田面積=(弦×矢+矢2),弧田(如圖)由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差,現(xiàn)有圓心角為,半徑等于米的弧田,按照上述經(jīng)驗公式計算所得弧田面積約是
A. 平方米 B. 平方米
C. 平方米 D. 平方米
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2020年春季,某出租汽車公司決定更換一批新的小汽車以代替原來報廢的出租車,現(xiàn)有兩款車型,根據(jù)以往這兩種出租車車型的數(shù)據(jù),得到兩款出租車車型使用壽命頻數(shù)表如下:
使用壽命年數(shù) | 5年 | 6年 | 7年 | 8年 | 總計 |
型出租車(輛) | 10 | 20 | 45 | 25 | 100 |
型出租車(輛) | 15 | 35 | 40 | 10 | 100 |
(1)填寫下表,并判斷是否有的把握認為出租車的使用壽命年數(shù)與汽車車型有關(guān)?
使用壽命不高于年 | 使用壽命不低于年 | 總計 | |
型 | |||
型 | |||
總計 |
(2)司機師傅小李準備在一輛開了年的型車和一輛開了年的型車中選擇,為了盡最大可能實現(xiàn)年內(nèi)(含年)不換車,試通過計算說明,他應(yīng)如何選擇.
附:,.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習慣,粽子又稱粽籺,俗稱“粽子”,古稱“角黍”,是端午節(jié)大家都會品嘗的食品,傳說這是為了紀念戰(zhàn)國時期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個邊長為1的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內(nèi)有一球,則該球體積的最大值為____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知公差不為零的等差數(shù)列{an}的前n項和為Sn,S3=15,a1,a4,a13成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列的前n項和Tn大于2020的最小自然數(shù)n.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某運動制衣品牌為了成衣尺寸更精準,現(xiàn)選擇15名志愿者,對其身高和臂展進行測量(單位:厘米),左圖為選取的15名志愿者身高與臂展的折線圖,右圖為身高與臂展所對應(yīng)的散點圖,并求得其回歸方程為,以下結(jié)論中不正確的為
A. 15名志愿者身高的極差小于臂展的極差
B. 15名志愿者身高和臂展成正相關(guān)關(guān)系,
C. 可估計身高為190厘米的人臂展大約為189.65厘米,
D. 身高相差10厘米的兩人臂展都相差11.6厘米,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com