【題目】已知數(shù)列,滿(mǎn)足:.
(1)若,求數(shù)列的通項(xiàng)公式;
(2)若,且.
① 記,求證:數(shù)列為等差數(shù)列;
② 若數(shù)列中任意一項(xiàng)的值均未在該數(shù)列中重復(fù)出現(xiàn)無(wú)數(shù)次,求首項(xiàng)應(yīng)滿(mǎn)足的條件.
【答案】(1)
(2)①根據(jù)等差數(shù)列的定義,證明相鄰兩項(xiàng)的差為定值來(lái)得到證明.從第二項(xiàng)起滿(mǎn)足題意即可.
②當(dāng),數(shù)列任意一項(xiàng)的值均未在該數(shù)列中重復(fù)出現(xiàn)無(wú)數(shù)次
【解析】
試題解:(1)當(dāng)時(shí),有
.
又也滿(mǎn)足上式,所以數(shù)列的通項(xiàng)公式是. 4分
(2)①因?yàn)閷?duì)任意的,有,所以,
,
所以,數(shù)列為等差數(shù)列. 8分
②設(shè)(其中為常數(shù)且,
所以,,
即數(shù)列均為以7為公差的等差數(shù)列. 10分
設(shè).
(其中為中一個(gè)常數(shù))
當(dāng)時(shí),對(duì)任意的,有; 12分
當(dāng)時(shí),.
(Ⅰ)若,則對(duì)任意的有,所以數(shù)列為遞減數(shù)列;
(Ⅱ)若,則對(duì)任意的有,所以數(shù)列為遞增數(shù)列.
綜上所述,集合.
當(dāng)時(shí),數(shù)列中必有某數(shù)重復(fù)出現(xiàn)無(wú)數(shù)次;
當(dāng)時(shí),數(shù)列均為單調(diào)數(shù)列,任意一個(gè)數(shù)在這6個(gè)數(shù)列中最多出現(xiàn)一次,所以數(shù)列任意一項(xiàng)的值均未在該數(shù)列中重復(fù)出現(xiàn)無(wú)數(shù)次. 18分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)l的參數(shù)方程為:,(t為參數(shù)).在以坐標(biāo)原點(diǎn)0為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)C的極坐標(biāo)方程為ρ2﹣4ρcosθ﹣4ρsinθ+4=0.
(1)求直線(xiàn)l的普通方程和曲線(xiàn)C的直角坐標(biāo)方程;
(2)設(shè)直線(xiàn)l與曲線(xiàn)C交于A,B兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若在定義域內(nèi)存在,使得成立,則稱(chēng)為函數(shù)的局部對(duì)稱(chēng)點(diǎn).
(1)若、且,證明:函數(shù)必有局部對(duì)稱(chēng)點(diǎn);
(2)若函數(shù)在區(qū)間內(nèi)有局部對(duì)稱(chēng)點(diǎn),求實(shí)數(shù)的取值范圍;
(3)若函數(shù)在上有局部對(duì)稱(chēng)點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】部分與整體以某種相似的方式呈現(xiàn)稱(chēng)為分形,一個(gè)數(shù)學(xué)意義上分形的生成是基于一個(gè)不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).分形幾何學(xué)不僅讓人們感悟到科學(xué)與藝木的融合,數(shù)學(xué)與藝術(shù)審美的統(tǒng)一,而且還有其深刻的科學(xué)方法論意義.如圖,由波蘭數(shù)學(xué)家謝爾賓斯基1915年提出的謝爾賓斯基三角形就屬于-種分形,具體作法是取一個(gè)實(shí)心三角形,沿三角形的三邊中點(diǎn)連線(xiàn),將它分成4個(gè)小三角形,去掉中間的那一個(gè)小三角形后,對(duì)其余3個(gè)小三角形重復(fù)上述過(guò)程逐次得到各個(gè)圖形.
若在圖④中隨機(jī)選取-點(diǎn),則此點(diǎn)取自陰影部分的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.
(I)證明:平面PQC⊥平面DCQ
(II)求二面角Q-BP-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電器專(zhuān)賣(mài)店銷(xiāo)售某種型號(hào)的空調(diào),記第天(,)的日銷(xiāo)售量為(單位;臺(tái)).函數(shù)圖象中的點(diǎn)分別在兩條直線(xiàn)上,如圖,該兩直線(xiàn)交點(diǎn)的橫坐標(biāo)為,已知時(shí),函數(shù).
(1)當(dāng)時(shí),求函數(shù)的解析式;
(2)求的值及該店前天此型號(hào)空調(diào)的銷(xiāo)售總量;
(3)按照經(jīng)驗(yàn)判斷,當(dāng)該店此型號(hào)空調(diào)的銷(xiāo)售總量達(dá)到或超過(guò)臺(tái),且日銷(xiāo)售量仍持續(xù)增加時(shí),該型號(hào)空調(diào)開(kāi)始旺銷(xiāo),問(wèn)該店此型號(hào)空調(diào)銷(xiāo)售到第幾天時(shí),才可被認(rèn)為開(kāi)始旺銷(xiāo)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知首項(xiàng)大于0的等差數(shù)列的公差,且;
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿(mǎn)足:,,,其中;
①求數(shù)列的通項(xiàng);
②是否存在實(shí)數(shù),使得數(shù)列為等比數(shù)列?若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(其中為參數(shù)),曲線(xiàn)的參數(shù)方程為(其中為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線(xiàn)、的極坐標(biāo)方程;
(2)射線(xiàn):與曲線(xiàn),分別交于點(diǎn),(且點(diǎn),均異于原點(diǎn)),當(dāng)時(shí),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)、、、(),都在函數(shù)(,)的圖像上;
(1)若數(shù)列是等差數(shù)列,求證:數(shù)列是等比數(shù)列;
(2)設(shè),函數(shù)的反函數(shù)為,若函數(shù)與函數(shù)的圖像有公共點(diǎn),求證:在直線(xiàn)上;
(3)設(shè),(),過(guò)點(diǎn)、的直線(xiàn)與兩坐標(biāo)軸圍成的三角形面積為,問(wèn):數(shù)列是否存在最大項(xiàng)?若存在,求出最大項(xiàng)的值,若不存在,請(qǐng)說(shuō)明理由;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com