16.△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為$a,b,c,asinAsinB+b{cos^2}A=\sqrt{3}a$,則$\frac{a}$的值為$\sqrt{3}$.

分析 根據(jù)正弦定理和三角函數(shù)的平方關(guān)系,即可求出$\frac{a}$的值.

解答 解:△ABC中,asinAsinB+bcos2A=$\sqrt{3}$a,
根據(jù)正弦定理,得sin2AsinB+sinBcos2A=$\sqrt{3}$sinA,
可得sinB(sin2A+cos2A)=$\sqrt{3}$sinA,
∵sin2A+cos2A=1,
∴sinB=$\sqrt{3}$sinA,得b=$\sqrt{3}$a,
可得$\frac{a}$=$\sqrt{3}$.
故答案為:$\sqrt{3}$.

點(diǎn)評(píng) 本題考查了正弦定理以及三角函數(shù)公式的應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.現(xiàn)有40米長(zhǎng)的籬笆材料,如果利用已有的一面墻(設(shè)長(zhǎng)度夠用)作為一邊,圍成一塊面積為S平方米的矩形菜地,則S的最大值為200平方米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若a∈(0,1)且b∈(1,+∞),則關(guān)于x的不等式${log_a}{b^{({x-3})}}<0$的解集為(3,+∞)..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)命題p:2x<1,命題q:x2<1,則p是q成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在平面直角坐標(biāo)系中,已知△PAB的周長(zhǎng)為8,且點(diǎn)A,B的坐標(biāo)分別為(-1,0),(1,0).
(Ⅰ)試求頂點(diǎn)P的軌跡C1的方程;
(Ⅱ)若動(dòng)點(diǎn)P1(x1,y1)在曲線(xiàn)C1上,試求動(dòng)點(diǎn)$Q(\frac{x_1}{3},\frac{y_1}{{2\sqrt{2}}})$的軌跡C2的方程;
(Ⅲ)過(guò)點(diǎn)C(3,0)作直線(xiàn)l與曲線(xiàn)C2相交于M,N兩點(diǎn),試探究是否存在直線(xiàn)l,使得點(diǎn)N恰好是線(xiàn)段CM的中點(diǎn).若存在,求出直線(xiàn)l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知f(x)=|lg(x+a)|在(0,+∞)為增函數(shù),則a的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)f(x)=2sin2x-sin2x,則函數(shù)f(x)的對(duì)稱(chēng)中心可以是( 。
A.$(-\frac{π}{8},0)$B.$(-\frac{π}{4},0)$C.$(-\frac{π}{8},1)$D.$(-\frac{π}{4},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列各式中成立的是(  )
A.${({\frac{m}{n}})^2}={n^2}{m^{\frac{1}{2}}}$B.$\sqrt{\root{3}{9}}=\root{3}{3}$C.$\root{4}{{{x^3}+{y^3}}}={(x+y)^{\frac{3}{4}}}$D.$\root{4}{{{{(-3)}^4}}}=-3$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)實(shí)數(shù)x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}2x-y-1≥0\\ x-2y+1≤0\\ x+y-5≤0\end{array}$,則當(dāng)z=ax+by(a>0,b>0)取得最小值2時(shí),則$\frac{1}{a}+\frac{1}$的最小值是( 。
A.$\frac{{5+2\sqrt{6}}}{2}$B.$5+2\sqrt{6}$C.$\frac{1}{2}$D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案