一拋物線型拱橋,當(dāng)水面離橋頂2m時,水面寬4m,若水面下降1m時,則水面寬為( 。
A.
6
m
B.2
6
m
C.4.5mD.9m
建立適當(dāng)?shù)闹苯亲鴺?biāo)系,設(shè)拋物線方程為x2=-2Py(P>0),由題意知,拋物線過點(2,-2),
∴4=2p×2.∴p=1.∴x2=-2y.
當(dāng)y0=-3時,得x02=6.
∴水面寬為2|x0|=2
6
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,過拋物線y2=2PX(P>0)的焦點F的直線與拋物線相交于M、N兩點,自M、N向準(zhǔn)線L作垂線,垂足分別為M1、N1   
 
(Ⅰ)求證:FM1⊥FN1:
(Ⅱ)記△FMM1、、△FM1N1、△FN N1的面積分別為,試判斷S22=4S1S3是否成立,并證明你的結(jié)論。   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

根據(jù)下列條件,求出拋物線的標(biāo)準(zhǔn)方程.
(1)過點(-3,2).
(2)焦點在x軸上,且拋物線上一點A(3,m)到焦點的距離為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線W:y=ax2經(jīng)過點A(2,1),過A作傾斜角互補的兩條不同直線l1,l2
(Ⅰ)求拋物線W的方程及準(zhǔn)線方程;
(Ⅱ)當(dāng)直線l1與拋物線W相切時,求直線l2的方程
(Ⅲ)設(shè)直線l1,l2分別交拋物線W于B,C兩點(均不與A重合),若以線段BC為直徑的圓與拋物線的準(zhǔn)線相切,求直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

準(zhǔn)線方程為x=-1的拋物線的標(biāo)準(zhǔn)方程為( 。
A.y2=-4xB.y2=4xC.y2=-2xD.y2=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知F是拋物線y2=4x的焦點,A,B是拋物線上兩點,△AFB是正三角形,則該正三角形的邊長為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知P是以F1,F(xiàn)2為焦點的橢圓
x2
a2
+
y2
b2
=1(a>b>0)上的一點,若PF1⊥PF2,tan∠PF1F2=
1
2
,則此橢圓的離心率為(  )
A.
1
2
B.
2
3
C.
1
3
D.
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點M在拋物線y2=4x上,F(xiàn)是拋物線的焦點,若∠xFM=60°,則FM的長為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線y2=4x上一點A到點B(3,2)與焦點的距離之和最小,則點A的坐標(biāo)為______.

查看答案和解析>>

同步練習(xí)冊答案