9.設(shè)復(fù)數(shù)z=2+i,則|z-$\overline{z}$|=(  )
A.4B.0C.2D.$2\sqrt{10}$

分析 復(fù)數(shù)z=2+i,可得$\overline{z}$=2-i,$z-\overline{z}$=2i.即可得出.

解答 解:復(fù)數(shù)z=2+i,則$\overline{z}$=2-i,∴$z-\overline{z}$=2i.
∴|z-$\overline{z}$|=|2i|=2,
故選:C.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、模的計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知a>b>c且$\frac{2}{a-b}+\frac{1}{b-c}≥\frac{m}{a-c}$恒成立,求實(shí)數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如果存在常數(shù)a,使得數(shù)列{an}滿足:若x是數(shù)列{an}中的一項(xiàng),則a-x也是數(shù)列{an}中的一項(xiàng),稱數(shù)列{an}為“兌換數(shù)列”,常數(shù)a是它的“兌換系數(shù)”.
(1)若數(shù)列:2,3,6,m(m>6)是“兌換系數(shù)”為a的“兌換數(shù)列”,求m和a的值;
(2)已知有窮等差數(shù)列{bn}的項(xiàng)數(shù)是n0(n0≥3),所有項(xiàng)之和是B,求證:數(shù)列{bn}是“兌換數(shù)列”,并用n0和B表示它的“兌換系數(shù)”;
(3)對(duì)于一個(gè)不少于3項(xiàng),且各項(xiàng)皆為正整數(shù)的遞增數(shù)列{cn},是否有可能它既是等比數(shù)列,又是“兌換數(shù)列”?給出你的結(jié)論,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.記不等式組$\left\{\begin{array}{l}4x+3y≥10\\ x≤3\\ y≤4\end{array}\right.$表示的平面區(qū)域?yàn)镈,過(guò)區(qū)域D中任意一點(diǎn)P作圓x2+y2=1的兩條切線,切點(diǎn)分別為A,B,則cos∠PAB的最大值為(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{1}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知x,y滿足$\left\{\begin{array}{l}{2x-y≤0}\\{3x+y-3≤0}\\{x≥0}\end{array}\right.$,則z=y-3x的最小值為$-\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知平面向量$\overrightarrow a=(1,2)$,$\overrightarrow b=(m,-4)$,且$\overrightarrow a∥\overrightarrow b$,則$\overrightarrow a•\overrightarrow b$=( 。
A.4B.-6C.-10D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=|2x+1|-|x|+a,
(1)若a=-1,求不等式f(x)≥0的解集;
(2)若方程f(x)=2x有三個(gè)不同的解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+x(a∈R+)在區(qū)間[2,4]上為單調(diào)遞增函數(shù),則$\frac{25}{a}$+a的取值范圍為( 。
A.[10,+∞)B.[$\frac{29}{2}$,+∞)C.[$\frac{25}{2}$,+∞)D.[$\frac{41}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=|3x-a|+|3x-6|,g(x)=|x-2|+1.
(Ⅰ)a=1時(shí),解不等式f(x)≥8;
(Ⅱ)若對(duì)任意x1∈R都有x2∈R,使得f(x1)=g(x2)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案