P是雙曲線
x2
9
-
y2
16
=1左準線上一點,F(xiàn)1、F2分別是其左、右焦點,PF2與雙曲線右支交于點Q,且
PQ
=3
QF2
,則|
QF1
|的值為( 。
A、
16
5
B、4
C、
102
25
D、
51
6
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:求出Q到左準線的距離,再利用相似,即可得出結論.
解答: 解:雙曲線
x2
9
-
y2
16
=1左準線方程為x=-
9
5
,右焦點為(5,0),
設Q到左準線的距離為d,則
∵PF2與雙曲線右支交于點Q,且
PQ
=3
QF2
,
d
5+
9
5
=
3
4

∴d=
51
10
,
∴|
QF1
|=
51
10
5
3
=
51
6

故選:D.
點評:本題考查雙曲線的定義,考查相似形,考查學生的計算能力,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在正三棱錐A-BCD中,三條側棱AB,AC,AD兩兩垂直,M,N分別是BC、AD的中點,則異面直線AM和CN所成的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在區(qū)間[1,6]上隨機取一個實數(shù)x,使得2x∈[2,4]的概率為(  )
A、
1
6
B、
1
5
C、
1
3
D、
2
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(1)=0,則不等式x•f(x)<0的解集為( 。
A、(-1,0)∪(1,+∞)
B、(-∞,-1)∪(0,1)
C、(-∞,-1)∪(1,+∞)
D、(-1,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b∈R+且2a+b=1,則
1
a
+
2
b
的最小值為(  )
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中是真命題的是( 。
A、若函數(shù)lgf(x)為奇函數(shù),則函數(shù)f(x)為奇函數(shù)
B、若函數(shù)lgf(x)為偶函數(shù),則函數(shù)f(x)為偶函數(shù)
C、若函數(shù)sinf(x)為奇函數(shù),則函數(shù)f(x)為奇函數(shù)
D、若函數(shù)sinf(x)為偶函數(shù),則函數(shù)f(x)為偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=2cosx+x2,x∈(-
π
2
,
π
2
)
( 。
A、是奇函數(shù)且在(0,
π
2
)
上為減函數(shù)
B、是奇函數(shù)且在(0,
π
2
)
上為增函數(shù)
C、是偶函數(shù)且在(0,
π
2
)
上為減函數(shù)
D、是偶函數(shù)且在(0,
π
2
)
上為增函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知(ax-1)5=a0+a1x+a2x2+a3x3+a4x4+32x5,則二項式(ax-1)5展開后的各項系數(shù)之和為(  )
A、1B、-1C、2D、32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項和為Sn,且滿足Sn=2-an,n∈N+,數(shù)列{bn}滿足b1=1,且bn+1=bn+an
(1)求數(shù)列{an}和{bn}的通項公式;
(2)設cn=n(3-bn),數(shù)列cn=n(3-bn)的前n項和為Tn,求證:Tn<8;
(3)設數(shù)列{dn}滿足dn=4n+(-1)n-1•λ•
1
an
(n∈N+),若數(shù)列{dn}是遞增數(shù)列,求實數(shù)λ的取值范圍.

查看答案和解析>>

同步練習冊答案