如圖,一半徑為的圓形靶內(nèi)有一個半徑為的同心圓,將大圓分成兩
部分,小圓內(nèi)部區(qū)域記為環(huán),圓環(huán)區(qū)域記為環(huán),某同學(xué)向該靶投擲枚飛鏢,每次枚. 假設(shè)他每次必
定會中靶,且投中靶內(nèi)各點是隨機的.
(1)求該同學(xué)在一次投擲中獲得環(huán)的概率;
(2)設(shè)表示該同學(xué)在次投擲中獲得的環(huán)數(shù),求的分布列及數(shù)學(xué)期望.

(1);(2)詳見解析.

解析試題分析:(1)先根據(jù)題中條件確定相應(yīng)的事件為幾何概型,然后利用幾何概型的概率計算公式(對應(yīng)區(qū)域面積之比)求出相應(yīng)事情的概率即可;(2)
(1)由題意可得是幾何概型,設(shè)
該同學(xué)一次投擲投中環(huán)的概率為;
(2)由題意可知可能的值為、,
,
,,
的分布列為











 
環(huán),
答:的數(shù)學(xué)期望為環(huán).
考點:1.幾何概型;2.離散型隨機變量分布列與數(shù)學(xué)期望

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

深圳市某校中學(xué)生籃球隊假期集訓(xùn),集訓(xùn)前共有6個籃球,其中3個是新球(即沒有用過的球),3個是舊球(即至少用過一次的球).每次訓(xùn)練,都從中任意取出2個球,用完后放回.
(1)設(shè)第一次訓(xùn)練時取到的新球個數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望;
(2)求第二次訓(xùn)練時恰好取到一個新球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某企業(yè)有甲、乙兩個研發(fā)小組,為了比較他們的研發(fā)水平,現(xiàn)隨機抽取這兩個小組往年研發(fā)新產(chǎn)品的結(jié)果如下:

其中分別表示甲組研發(fā)成功和失;分別表示乙組研發(fā)成功和失敗.
(1)若某組成功研發(fā)一種新產(chǎn)品,則給改組記1分,否記0分,試計算甲、乙兩組研發(fā)新產(chǎn)品的成績的平均數(shù)和方差,并比較甲、乙兩組的研發(fā)水平;
(2)若該企業(yè)安排甲、乙兩組各自研發(fā)一種新產(chǎn)品,試估算恰有一組研發(fā)成功的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某煤礦發(fā)生透水事故時,作業(yè)區(qū)有若干人員被困.救援隊從入口進入之后有兩條巷道通往作業(yè)區(qū)(如下圖),巷道有三個易堵塞點,各點被堵塞的概率都是;巷道有兩個易堵塞點,被堵塞的概率分別為

(1)求巷道中,三個易堵塞點最多有一個被堵塞的概率;
(2)若巷道中堵塞點個數(shù)為,求的分布列及數(shù)學(xué)期望,并按照"平均堵塞點少的巷道是較好的搶險路線"的標(biāo)準,請你幫助救援隊選擇一條搶險路線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

地為綠化環(huán)境,移栽了銀杏樹棵,梧桐樹棵.它們移栽后的成活率分別
,每棵樹是否存活互不影響,在移栽的棵樹中:
(1)求銀杏樹都成活且梧桐樹成活棵的概率;
(2)求成活的棵樹的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

袋中裝有大小和形狀相同的小球若干個黑球和白球,且黑球和白球的個數(shù)比為4:3,從中任取2個球都是白球的概率為現(xiàn)不放回從袋中摸取球,每次摸一球,直到取到白球時即終止,每個球在每一次被取出的機會是等可能的,用表示取球終止時所需要的取球次數(shù).
(1)求袋中原有白球、黑球的個數(shù);
(2)求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(2012•廣東)某班50位學(xué)生期中考試數(shù)學(xué)成績的頻率直方分布圖如圖所示,其中成績分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中x的值;
(2)從成績不低于80分的學(xué)生中隨機選取2人,該2人中成績在90分以上(含90分)的人數(shù)記為ξ,求ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

小波以游戲方式?jīng)Q定是去打球、唱歌還是去下棋。游戲規(guī)則為:以O(shè)為起點,再從(如圖)這六個點中任取兩點分別為終點得到兩個向量,記這兩個向量的數(shù)量積為,若就去打球,若就去唱歌,若就去下棋。
(1)寫出數(shù)量積的所有可能值;
(2)分別求小波去下棋的概率和不去唱歌的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某工藝廠開發(fā)一種新工藝品,頭兩天試制中,該廠要求每位師傅每天制作10件,該廠質(zhì)檢部每天從每位師傅制作的10件產(chǎn)品中隨機抽取4件進行檢查,若發(fā)現(xiàn)有次品,則當(dāng)天該師傅的產(chǎn)品不能通過.已知李師傅第一天、第二天制作的工藝品中分別有2件、1件次品.
(1)求兩天中李師傅的產(chǎn)品全部通過檢查的概率;
(2)若廠內(nèi)對師傅們制作的工藝品采用記分制,兩天全不通過檢查得0分,通過1天、2天分別得1分、2分,求李師傅在這兩天內(nèi)得分的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案