11.某電子商務公司對10000名網(wǎng)絡購物者2014年度的消費情況進行統(tǒng)計,發(fā)現(xiàn)消費金額(單位:萬元)都在區(qū)間[0.3,0.9]內(nèi),其頻率分布直方圖如圖所示.直方圖中的a=3.

分析 頻率分布直方圖中每一個矩形的面積表示頻率,先算出頻率,在根據(jù)頻率和為1,算出a的值

解答 解:由題意,根據(jù)直方圖的性質(zhì)得(1.5+2.5+a+2.0+0.8+0.2)×0.1=1,
解得a=3,
故答案為:3

點評 本題考查了頻率分布直方圖中每一個矩形的面積表示頻率,頻數(shù)=頻率×樣本容量,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.設m,n∈R,若直線l:2mx+ny-1=0與x軸相交于點A,與y軸相交于點B,且坐標原點O到直線l的距離為$\sqrt{3}$,則△AOB的面積S的最小值為( 。
A.$\frac{1}{2}$B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.二項式(x+$\frac{1}{2x}$)8的展開式中x4項的系數(shù)為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知實數(shù)x,y滿足$\left\{\begin{array}{l}x≤1\\ y≥\frac{2}{3}\\ 2x-y≥0\end{array}\right.$,則目標函數(shù)z=x+y的最小值為( 。
A.$\frac{1}{2}$B.1C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.函數(shù)f(x)=$\sqrt{2{x^2}+x-3}$+log3(3+2x-x2)的定義域為[1,3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.(1)對于函數(shù)f(x),若在定義域內(nèi)存在實數(shù)x滿足f(-x)=-f(x)則稱f(x)為局部函數(shù),已知二次函數(shù)f(x)=ax2+2x-4a(a∈R,a≠0)是定義域在R上的局部函數(shù),則滿足f(-x)=-f(x)的x值是±2
(2)若直角坐標平面內(nèi)兩點A、B滿足條件:點A、B都在f(x)的圖象上;點A、B關于原點對稱,則對稱點(A、B)對是函數(shù)的一個姊妹點對點對(A、B)與(B、A)可看做一個姊妹點對.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x<0}\\{\frac{2}{{e}^{x}},x≥0}\end{array}\right.$則f(x)的姊妹點對個數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.隨著我國經(jīng)濟的發(fā)展,居民的儲蓄存款逐年增長.設某地區(qū)城鄉(xiāng)居民人民幣儲蓄存款(年底余額)如表:
年份20102011201220132014
時間代號t12345
儲蓄存款y (千億元)567810
(1)求y關于t回歸方程$\widehat{y}$=$\widehat{a}$+$\widehat$t;
用所求回歸方程預測該地區(qū)2016年(t=7)人民幣儲蓄存款.
附:回歸直線方程$\widehat{y}$=$\widehat{a}$+$\widehat$t中,$\widehat$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{{t}_{i}}^{2}-n{\overline{t}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{t}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.在平面直角坐標系xOy中,已知以x軸為始邊的角α、β的終邊分別經(jīng)過點(-4,3)、(3,4),則cosα+sinβ=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=ex-ax+1,其中a為實常數(shù),e=2.71828…為自然對數(shù)的底數(shù).
(1)當a=e時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在定義域內(nèi)單調(diào)遞增,求a的取值范圍;
(3)已知a>0,并設函數(shù)f(x)的最小值為g(a),求證:g(a)≤2.

查看答案和解析>>

同步練習冊答案