已知全集合為R,集合A={x|x2+6x+8>0},集合B={x||2x+8|<12}.求∁UA∪B、∁U﹙A∪B﹚、∁U﹙A∩B﹚.
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專題:集合
分析:分別求出A與B中不等式的解集,確定出A與B,求出A與B的交集及并集,且求出A與B的補(bǔ)集,即可確定出所求集合.
解答: 解:由A中的不等式變形得:(x+2)(x+4)>0,
解得:x>-2或x<-4,即A=(-∞,-4)∪(-2,+∞),
由B中的不等式變形得:-12<2x+8<12,
解得:-10<x<2,即B=(-10,2),
∴∁UA=[-4,-2],∁UB=(-∞,-10]∪[2,+∞)
,A∩B=(-10,-4)∪(-2,2),A∪B=R,
則(∁UA)∪B=(-10,2),∁U﹙A∪B﹚=∅,
U﹙A∩B﹚=(-∞,-10]∪[-4,-2]∪[2,+∞).
點(diǎn)評(píng):此題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是公差不為0的等差數(shù)列,從該數(shù)列中抽取某些項(xiàng):a1,a5,a17,ak1,ak2…,akn組成等比數(shù)列.
(1)求公比;
(2)求數(shù)列{kn}的通項(xiàng)公式,求數(shù)列{
n(kn+1)
22n+1
}的最大值項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某空間幾何體的三視圖及尺寸如圖所示,則該幾何體的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡(jiǎn):
(1)sin75°cos34°+sin15°cos56°
(2)cos(
π
6
-α)sinα+cos(
π
3
+α)cosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-5x+6≤0},B={x|x2-4x+3a<0}.若A∪B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={x|-2≤x≤a},B={y|y=2x+3,x∈A},C={z|z=x2,x∈A},且B∩C=C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=|
b
|=|
c
|=1,且
c
=
3
5
a
+
4
5
b

(1)求證:
a
b

(2)設(shè)
a
c
的夾角為θ,求cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果具有下述性質(zhì)的x都是集合M中的元素,其中x=a+b
2
(a,b∈Q),則下列元素中,不屬于集合M的元素的個(gè)數(shù)是
 

①x=0 ②x=
2
③x=3-2
2
π
④x=
1
3-2
2
⑤x=
6-4
2
+
6+4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C對(duì)應(yīng)的邊長為a、b、c,已知(sinA2+sinB2)(acosB-bcosA)=(sinA2-sinB2)(acosB+bcosA),則△ABC為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案