【題目】分別為菱形的邊的中點(diǎn),將菱形沿對角線折起,使點(diǎn)不在平面內(nèi),則在翻折過程中,以下命題正確的是___________.(寫出所有正確命題的序號)
①平面;②異面直線與所成的角為定值;③在二面角逐漸漸變小的過程中,三棱錐的外接球半徑先變小后變大;④若存在某個位程,使得直線與直線垂直,則的取值范圍是.
【答案】①②④
【解析】
①由,可得證;②取AC中點(diǎn)P,可證得平面DPB,可得正;③ 借助極限狀態(tài),當(dāng)平面DCA與平面BCA重合時,三棱錐的外接球即為以三角形ABC的外接圓為圓心,半徑為半徑的球,二面角不為0時,外接圓的半徑一定大于此半徑,不正確. ④
過A在平面ABC中作交BC于H,分析H點(diǎn)在BC上的位置,可得證.
①由分別為菱形的邊的中點(diǎn),故,平面ABD,故平面;
②取AC中點(diǎn)P,連接DP,BP,由于菱形ABCD,所以,可證得平面DPB,故,又,故,異面直線與所成的角為定值.
③ 借助極限狀態(tài),當(dāng)平面DCA與平面BCA重合時,三棱錐的外接球即為以三角形ABC的外接圓為圓心,半徑為半徑的球,當(dāng)二面角變大時球心離開平面ABC,但球心在平面ABC的投影仍然為三角形ABC的外接圓的圓心,故二面角不為0時,外接球半徑一定大于三角形ABC的外接圓半徑,故三棱錐的外接球半徑不可能先變小后變大.
④
過A在平面ABC中作交BC于H,若為銳角,H在線段BC上;若為直角,H與B點(diǎn)重合;為鈍角,H在線段BC的延長線射線CB上.
若存在某個位程,使得直線與直線垂直,由于,因此平面AHD,
故.
若為直角,H與B點(diǎn)重合,即,由于,不可能成立.
若為鈍角,則原平面圖中,為銳角,由于立體圖中,故立體圖中一定比原圖中更小,因此為銳角,,故H在線段CB上,與H在線段BC的延長線射線CB上矛盾,因此的取值范圍是.
故答案為:①②④
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】京劇是我國的國粹,是“國家級非物質(zhì)文化遺產(chǎn)”,為紀(jì)念著名京劇表演藝術(shù)家,京劇藝術(shù)大師梅蘭芳先生,某電視臺《我愛京劇》的一期比賽中,2位“梅派”傳人和4位京劇票友(資深業(yè)余愛好者)在幕后登臺演唱同一曲目《貴妃醉酒》選段,假設(shè)6位演員的演唱水平相當(dāng),由現(xiàn)場40位大眾評委和“梅派”傳人的朋友猜測哪兩位是真正的“梅派”傳人.
(1)此欄目編導(dǎo)對本期的40位大眾評委的年齡和對京劇知識的了解進(jìn)行調(diào)查,根據(jù)調(diào)查得到的數(shù)據(jù)如下:
京劇票友 | 一般愛好者 | 合計(jì) | |
50歲以上 | 15 | 10 | 25 |
50歲以下 | 3 | 12 | 15 |
合計(jì) | 18 | 22 | 40 |
試問:在犯錯誤的概率不超過多少的前提下,可以認(rèn)為年齡的大小與對京劇知識的了解有關(guān)系?
(2)若在一輪中演唱中,每猜出一位亮相一位,且規(guī)定猜出2位“梅派”傳人”或猜出5人后就終止,記本輪競猜一共競猜次,求隨機(jī)變量的分布列與期望.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 |
0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓C:()的左、右焦點(diǎn)分別為,,直線l:交橢圓C于A,B兩點(diǎn),且的周長為8.
(1)求橢圓C的方程;
(2)若線段的中點(diǎn)為P,直線與橢圓C交于M,N兩點(diǎn),且,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
Ⅰ討論的單調(diào)性;
Ⅱ當(dāng)時,若關(guān)于x的不等式恒成立,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在梯形ABCD中,AD∥BC,AB=BC2,E為AD的中點(diǎn),O是AC與BE的交點(diǎn),將△ABE沿BE翻折到圖2中△A1BE的位置得到四棱錐A1﹣BCDE.
(1)求證:CD⊥A1C;
(2)若A1C,BE=2,求點(diǎn)C到平面A1ED的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓C:(>>0)的右焦點(diǎn)為F(1,0),且過點(diǎn)(1,),過點(diǎn)F且不與軸重合的直線與橢圓C交于A,B兩點(diǎn),點(diǎn)P在橢圓上,且滿足.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若,判斷函數(shù)是否存在極值,若存在,求出極值:若不存在,說明理由:
(2)若在上恒成立,求實(shí)數(shù)的取值范圍:
(3)若函數(shù)存在兩個極值點(diǎn),證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正三棱柱(底面為正三角形的直棱柱)ABC﹣A1B1C1中,已知AB=AA1=2,點(diǎn)Q為BC的中點(diǎn).
(1)求證:平面AQC1⊥平面B1BCC1;
(2)求直線CC1與平面AQC1所成角的正切值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com