設(shè)數(shù)滿足:.
(1)求證:數(shù)列是等比數(shù)列;
(2)若,且對任意的正整數(shù),都有,求實(shí)數(shù)的取值范圍.

(1)詳見解析;(2).

解析試題分析:(1)先令求出的值,然后令,由得到
,將兩式相減得到,利用定義法證明數(shù)列
等比數(shù)列;(2)在(1)的基礎(chǔ)上求出數(shù)列的通項(xiàng)公式,進(jìn)而確定數(shù)列的通項(xiàng)公式,將不等式
轉(zhuǎn)化為,利用作差法研究數(shù)列的單調(diào)性,確定數(shù)列的最大項(xiàng)的值,
從而解出相應(yīng)的不等式即可.
(1)當(dāng)時(shí),則有,解得,
當(dāng)時(shí),,
,
上式下式,得,所以,
,且
因此數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,
因此;
(2),對任意的正整數(shù)恒成立,則,

當(dāng)時(shí),,即,因此,
當(dāng)時(shí),則,則有,
當(dāng)時(shí),,即,則數(shù)列從第四項(xiàng)開始單調(diào)遞減,
因此,最大,,
所以,即,解得
因此實(shí)數(shù)的取值范圍是.
考點(diǎn):1.定義法求數(shù)列通項(xiàng);2.等比數(shù)列的定義;3.數(shù)列的單調(diào)性;4.不等式恒成立

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

數(shù)列的通項(xiàng)為 前項(xiàng)和為, 則_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

在數(shù)列中, 已知, 則________________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-2,數(shù)列{bn}滿足b1=1,且bn+1=bn+2.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cnanbn,求數(shù)列{cn}的前2n項(xiàng)和T2n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)已知一個(gè)數(shù)列的各項(xiàng)都是1或2.首項(xiàng)為1,且在第個(gè)1和第個(gè)1之間有個(gè)2,即1,2,1,2,2,2,1,2,2,2,2,2,1,….記數(shù)列的前項(xiàng)的和為.參考:31×32=992,32×33=1056,44×45=1980,45×46=2070
(I)試問第10個(gè)1為該數(shù)列的第幾項(xiàng)?
(II)求;
(III)是否存在正整數(shù),使得?如果存在,求出的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知等差數(shù)列的前n項(xiàng)和為,,,則數(shù)列的前100項(xiàng)和為(    )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知數(shù)列的前項(xiàng)和,則     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

數(shù)列{}中,=1, ,它的通項(xiàng)公式為
,根據(jù)上述結(jié)論,可以知道不超過實(shí)數(shù) 的最大整數(shù)為              

查看答案和解析>>

同步練習(xí)冊答案