【題目】若正項數(shù)列{an}滿足: =an+1﹣an(a∈N*),則稱此數(shù)列為“比差等數(shù)列”.
(1)請寫出一個“比差等數(shù)列”的前3項的值;
(2)設數(shù)列{an}是一個“比差等數(shù)列”
(i)求證:a2≥4;
(ii)記數(shù)列{an}的前n項和為Sn , 求證:對于任意n∈N*,都有Sn

【答案】
(1)解:解:一個“比差等數(shù)列”的前3項可以是:2,4,
(2)解:(i)證明:當n=1時,

= = = ,

∵an>0,∴ ,則a1﹣1>0,即a1>1,

≥2 +2=4,

當且僅當 時取等號,

則a2≥4成立;

(ii)由an>0得,an+1﹣an= ≥0,

∴an+1≥an>0,則an+1﹣an= ,

由a2≥4得,a3﹣a2≥1,a4﹣a3≥1,…,an﹣an1≥1,

以上 n﹣1個不等式相加得,an≥(n﹣2)+4=n+2(n≥2),

當n≥2時,Sn=a1+a2+a3+…+an

≥1+4+(3+2)+…+(n+2)≥(1+2)+(2+2)+…+(n+2)﹣2

= ﹣2=

當n=1時,由(i)知S1=a1>1≥ ,

綜上可得,對于任意n∈N*,都有Sn


【解析】(1)根據(jù)“比差等數(shù)列”的定義,寫出一個“比差等數(shù)列”的前3項即可;(2)(i)當n=1時可得 ,求出a2利用分離常數(shù)法化簡,由an>0可得a1>1,利用基本不等式證明a2≥4;(ii)由an>0得an+1﹣an= ≥0,得an+1≥an>0從而得到an+1﹣an= ,列出n﹣1個不等式并相加得an≥n+2(n≥2),當n≥2時利用放縮法和等差數(shù)列的前n項和公式化簡后,得到Sn的不等式再驗證n=1時是否成立即可.
【考點精析】通過靈活運用數(shù)列的前n項和和數(shù)列的通項公式,掌握數(shù)列{an}的前n項和sn與通項an的關系;如果數(shù)列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】(18)(本小題滿分12分)在心理學研究中,常采用對比試驗的方法評價不同心理暗示對人的影響,具體方法如下:將參加試驗的志愿者隨機分成兩組,一組接受甲種心理暗示,另一組接受乙中心理暗示,通過對比這兩組志愿者接受心理暗示后的結果來評價兩種心理暗示的作用,現(xiàn)有6名男志愿者A1,A2,A3,A4,A5,A6和4名B1,B2,
B3,B4,從中隨機抽取5人接受甲種心理暗示,另5人接受乙種心理暗示。
(I)求接受甲種心理暗示的志愿者中包含A1但不包含B3的頻率。
(II)用X表示接受乙種心理暗示的女志愿者人數(shù),求X的分布列與數(shù)學期望EX。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將半徑都為1的4個鋼球完全裝入形狀為正四面體的容器里,這個正四面體的高的最小值為(
A.
B.2+
C.4+
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且a1=0,nan+1=Sn+n(n+1).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足an+log3n=log3bn , 求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若是函數(shù)的一個極值點, 和1是的兩個零點,且,求的值;

(2)若,且的兩個極值點,求證:當時, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,a、b、c分別是角A、B、C的對邊,且 ,
(1)求角B的大小;
(2)若 ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種產(chǎn)品的廣告費支出x與銷售額(單位:百萬元)之間有如下對應數(shù)據(jù):
如果y與x之間具有線性相關關系.

(1)作出這些數(shù)據(jù)的散點圖;
(2)求這些數(shù)據(jù)的線性回歸方程;
(3)預測當廣告費支出為9百萬元時的銷售額.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐P﹣ABCD中,PD⊥平面ABCD,底面是邊長是1的正方形,側棱PA與底面成45°的角,M,N,分別是AB,PC的中點;

(1)求證:MN∥平面PAD;
(2)求四棱錐P﹣ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】霧霾天氣是一種大氣污染狀態(tài),PM2.5被認為是造成霧霾天氣的“元兇”,PM2.5日均值越小,空氣質量越好.國家環(huán)境標準設定的PM2.5日均值(微克/立方米)與空氣質量等級對應關系如表:

PM2.5日均值
(微克/立方米)

0﹣﹣35

35﹣﹣75

75﹣﹣115

115﹣﹣150

150﹣﹣250

250以上

空氣質量等級

1級
優(yōu)

2級

3級
輕度污染

4級
中度污染

5級
重度污染

6級
嚴重污染

由某市城市環(huán)境監(jiān)測網(wǎng)獲得4月份某5天甲、乙兩城市的空氣質量指數(shù)數(shù)據(jù),用莖葉圖表示,如圖所示.

(1)試根據(jù)統(tǒng)計數(shù)據(jù),分別寫出兩城區(qū)的PM2.5日均值的中位數(shù),并從中位數(shù)角度判斷哪個城區(qū)的空氣質量較好?
(2)考慮用頻率估計概率的方法,試根據(jù)統(tǒng)計數(shù)據(jù),估計甲城區(qū)某一天空氣質量等級為3
(3)分別從甲、乙兩個城區(qū)的統(tǒng)計數(shù)據(jù)中任取一個,試求這兩城區(qū)空氣質量等級相同的概率.

查看答案和解析>>

同步練習冊答案