精英家教網 > 高中數學 > 題目詳情
定義:若{y|y=f(x),x∈A}=A,則f(x)稱為A上的一階回歸函數;
若{y|y=f(f(x)),x∈A}=A,則f(x)稱為A上的二階回歸函數;
若{y|y=f(f(f(x))),x∈A}=A,則f(x)稱為A上的三階回歸函數.
下列判斷正確的個數是( )
①f(x)=3-x是[1,2]上的一階回歸函數;
是[-1,0]上的一階回歸函數
是(0,+∞)上的二階回歸函數;
是(2,+∞)上的三階回歸函數.
A.1個
B.2個
C.3個
D.4個
【答案】分析:根據一階回歸函數的概念,分別判斷f(x)=3-x在[1,2]上和在[-1,0]上,是否滿足定義可判斷①②的真假;根據二階回歸函數的概念,判斷在(0,+∞)上是否滿足定義可判斷③的真假;根據三階回歸函數的概念,判斷在(2,+∞)上是否滿足定義可判斷④的真假;
解答:解:∵f(x)=3-x在[1,2]上單調遞減,∴當x=1時,f(x)取最大值2,當x=2時,f(x)取最小值1,
即{y|y=f(x)=3-x,x∈[1,2]}=[1,2],故①中函數是一階回歸函數,故①正確;
在[-1,0]上單調遞增,∴當x=-1時,f(x)取最小值-1,當x=0時,f(x)取最大值0,
即{y|y=,x∈[-1,0]}=[-1,0],故②中函數是一階回歸函數,故②正確;
,∴x∈(0,+∞)時,y=f(f(x))==x∈(0,+∞),即③中函數是二階回歸函數,故③正確;
,∴x∈(2,+∞)時,y=f(f(f(x)))=======x∈(2,+∞),即④中函數是三階回歸函數,故④正確;
故選D
點評:X本題又命題的真假判斷為載體,考查了基本函數的定義域,值域,單調性,其中正確理解新定義,是解答的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

給出定義:若m-
1
2
<x≤m+
1
2
(m∈Z),則稱m為離實數x最近的整數,記作{x}=m,在此基礎上給出下列關于函數f(x)=|x-{x}|的五個命題:
①函數y=f(x)的定義域為R,值域為[0,
1
2
]
;
②函數y=f(x)是周期函數,最小正周期為1;
③函數y=f(x)在[-
1
2
1
2
]
上是增函數;
④函數y=f(x)的圖象關于直線x=
k
2
(k∈Z)對稱;
⑤函數y=f(x)的圖象關于點(k,0)(k∈Z)對稱.
其中正確的命題有( 。﹤.

查看答案和解析>>

科目:高中數學 來源: 題型:

定義:若{y|y=f(x),x∈A}=A,則f(x)稱為A上的一階回歸函數;
若{y|y=f(f(x)),x∈A}=A,則f(x)稱為A上的二階回歸函數;
若{y|y=f(f(f(x))),x∈A}=A,則f(x)稱為A上的三階回歸函數.
下列判斷正確的個數是(  )
①f(x)=3-x是[1,2]上的一階回歸函數;
f(x)=1-(
1
2
)x
是[-1,0]上的一階回歸函數
f(x)=
-2
x
是(0,+∞)上的二階回歸函數;
f(x)=
1
1-x
是(2,+∞)上的三階回歸函數.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

定義:已知函數f(x)與g(x),若存在一條直線y=kx+b,使得對公共定義域內的任意實數均滿足g(x)≤f(x)≤kx+b恒成立,其中等號在公共點處成立,則稱直線y=kx+b為曲線f(x)與g(x)的“左同旁切線”.已知f(x)=Inx,g(x)=1-數學公式
(I)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;
(Ⅱ)設P(x1,f(x1)),Q(x2,f(x2))是函數 f(x)圖象上任意兩點,且0<x1<x2,若存在實數x3>0,使得f′(x3)=數學公式.請結合(I)中的結論證明x1<x3<x2

查看答案和解析>>

科目:高中數學 來源:2002-2013學年江蘇省泰州二中高二(下)期中數學試卷(理科)(解析版) 題型:解答題

定義:已知函數f(x)與g(x),若存在一條直線y=kx+b,使得對公共定義域內的任意實數均滿足g(x)≤f(x)≤kx+b恒成立,其中等號在公共點處成立,則稱直線y=kx+b為曲線f(x)與g(x)的“左同旁切線”.已知f(x)=Inx,g(x)=1-
(I)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;
(Ⅱ)設P(x1,f(x1)),Q(x2,f(x2))是函數 f(x)圖象上任意兩點,且0<x1<x2,若存在實數x3>0,使得f′(x3)=.請結合(I)中的結論證明x1<x3<x2

查看答案和解析>>

科目:高中數學 來源:2012-2013學年北京市重點中學高三(上)10月月考數學試卷(理科)(解析版) 題型:選擇題

定義:若{y|y=f(x),x∈A}=A,則f(x)稱為A上的一階回歸函數;
若{y|y=f(f(x)),x∈A}=A,則f(x)稱為A上的二階回歸函數;
若{y|y=f(f(f(x))),x∈A}=A,則f(x)稱為A上的三階回歸函數.
下列判斷正確的個數是( )
①f(x)=3-x是[1,2]上的一階回歸函數;
是[-1,0]上的一階回歸函數
是(0,+∞)上的二階回歸函數;
是(2,+∞)上的三階回歸函數.
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

同步練習冊答案