若x2+ax+b<0的解集為(-1,2),則a+b=
 
考點:一元二次不等式的解法
專題:不等式的解法及應用
分析:由于x2+ax+b<0的解集為(-1,2),可知:-1,2是一元二次方程x2+ax+b=0兩個實數(shù)根,再利用根與系數(shù)的關系即可得出.
解答: 解:∵x2+ax+b<0的解集為(-1,2),
∴-1,2是一元二次方程x2+ax+b=0兩個實數(shù)根,
-1+2=-a
-1×2=b
,解得a=-1,b=-2.
∴a+b=-3.
故答案為:-3.
點評:本題考查了一元二次不等式的解法、一元二次方程的根與系數(shù)的關系,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax3+bx,且f(1)=3,f(2)=12,
(1)求函數(shù)f(x)的解析式;
(2)求f(0),f(3)的值;
(3)判斷函數(shù)f(x)的奇偶性,并證明結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a+b+c=1,
(1)求S=2a2+3b2+c2的最小值及取最小值時a,b,c的值.
(2)若2a2+3b2+c2=1,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx-4,若x=-
1
3
與x=-1是f(x)的極值點.
(1)求a、b及函數(shù)f(x)的極值;
(2)設g(x)=kx2+x-8(k∈R),試討論函數(shù)F(x)=f(x)-g(x)在區(qū)間[0,+∞)上的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x、y、z∈R+,x2+y2+z2=1,當x+2y+2z取得最大值時,x+y+z=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項公式an=
n+1,n為正奇數(shù)
2n,n為正偶數(shù)
,則{an}的前n項和為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的前n項和為Sn,對任意n∈N*都有Sn=
2
3
an-
1
3
,則Sn=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將正奇數(shù)排成如下圖所示的三角形數(shù)陣(第k行有k個奇數(shù)),其中第i行第j個數(shù)表示為aij(i,j∈N*).例如a42=15,若aij=2013,則i-j=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知棱長為1的正方體ABCD-A1B1C1D1中,E是A1B1的中點,則直線與AE與平面ABC1D1所成角的正弦值
 

查看答案和解析>>

同步練習冊答案